
Assurance-based Learning-enabled 
Cyber-Physical Systems

Gabor Karsai, Xenofon Koutsoukos, Taylor Johnson, Ted Bapty, Abhishek 
Dubey, Nag Mahadevan, and many others

Supported by DARPA AA/AFRL

1



Project challenge
AI/ML in Cyber-Physical Systems
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“Our vision is to … create a new design flow that extends from design-time to 
operation time, re-interprets the traditional assurance argumentation to become a 
dynamic, operational concept. Our ultimate goal is to establish a fusion of model-
and component-based methods with data-driven methods.”

Model-driven design flow Model-driven design flow with LEC-s



Project activities
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} Thrusts:
} Verification:  formal and/or coverage-

driven verification of safety / robustness 
properties of components, subsystems, 
and systems, at design-time and at run-
time, to provide evidence for assurance 
arguments

} Assurance:  construction and 
continuous monitoring of logical 
arguments that demonstrate the truth
or strength of a safety claim based on 
available evidence

} Toolchain: design-time and run-time 
software tools to implement and 
support the above, for real systems

Verification

Assurance

Toolchain (Design-time)

Verification

Assurance

Toolchain (Run-time)



ALC Toolchain Approach

System 
Integrator

• The model driven toolchain 
supports training, verification 
and design-time assurance of 
learning enabled components.
• Toolchain helps with 

developing safety assurance 
cases for the system using 
collected evidence.
• Complete provenance tracking 

of experimental runs and data 
collection is supported.

LEC  
Developer
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Engineer
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ALC Toolchain
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ALC Toolchain Concepts
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} Modeling
} System Architecture / SysML

} LEC Construction
} Data collection
} Training
} Evaluation

} Testing -- Verification/Validation/Assurance



ALC Design Workflow
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} Specialized for LEC development

Workflow/Orchestration

Job JobJob



Modeling Blocks, Systems, Training, & Execution
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Model Systems
• Block Library
• Messages/Datatypes for Software
• System Structure

Construct Experiments
• Data Collection
• LEC Training
• Assurance

Verification, Validation, and Assurance
• Formal System Verification
• LEC Validation
• Assurance Argument Modeling

Workflows:
• Create/Execute Sequences of Operations

Data Sets:
• Maintain Data Created via Construction Workflows
• Track Data Provenance
• Launch analysis of data



Modeling
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Data Models, Messages

Components:
Hardware, Software/LEC

Systems: Components/ Subsystems; Parameters,...

World models: Scenarios, Environments, Parameters



System architecture models:
SysML block diagrams

Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility
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Dynamic Assurance 
Process

Assurance
Monitors



Code generation:
ROS Skeleton Code
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} Generate implementation source code (skeleton) and launch files for the 
components from architectural models
} Preserve custom code (‘business logic’) when re-generating 
} Boilerplate code for interfacing with LECs
} Launch files generated for individual components and composed system

} Automatically deploy & build ROS Packages
} ROS source code and launch files

ROS Code 
Generator



LEC Construction
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1. Data Collection

2. Training

Select Configuration

3. Evaluation



LEC Construction:
1. Data Collection
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} Assembly model selects a specific implementation variant of a system architecture

} Mission, Environment, and Execution parameters set up the experiment scenario

} Campaigns across parameters a configurations related to system and environments

} Tool generates configuration file for running the simulation, captures results + meta data for all trials

Implementation
Alternative

Environment 
Model

Remote job: launching of 
dockers, management of 
results.

Dockerized ALC-toolchain 
services for portability

Parameter 
Sweep



LEC Construction:
2. Training
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} Neural Net model and parameters 
specified in “LEC Model”

} “Training Data” links to data 
generated from previous 
experiments

} Training job is dispatched to worker 
machines (typically with GPUs)

} Results and metadata are saved 
from the training sessions



LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build 
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost



Assurance Monitors

Xenofon Koutsoukos and team

16



17

Perception Control Autonomous
Vehicle

Environment End-to-end control

Monitoring 
based on 
Conformal 
Prediction

Design of 
Monitoring 
LEC and 

Calibration

Assurance monitoring based on 
inductive conformal anomaly detection
• Variational autoencoder (VAE)
• VAE for regression/classification
• Adversarial Autoencoder (AAE)
• Deep support vector description (SVDD)

• Evaluation
Self-driving simulator (and open datasets)
Autonomous underwater vehicle 

Assurance Monitoring in Learning-Enabled 
CPS



Real-Time Detection of Dataset Shifts
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} LECs may compromise system safety when their predictions may 
have large errors
} When the runtime data are different than the data used for training. 

} Approach based on inductive conformal prediction and anomaly 
detection
} Neural network architectures to compute efficiently the nonconformity of 

new inputs relative to the training data.
} Multiple examples sampled from generative models to improve robustness 

of detection: Variational Autoencoder (VAE)
} Saliency maps that identify parts of the input that contribute most to the 

LEC predictions improve robustness. 
} Evaluation results

} Small detection delay
} Small number of false alarms 
} Execution time comparable to the execution time of the original LECs. 



Novelty Detection in High-Dimensional 
Time-series
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• In autonomous systems, inputs are high-dimensional sensor 
measurements (e.g., camera, LiDAR) and arrive one by one based on 
the sampling rate of the sensors 

• After observing each input, inductive conformal anomaly detection 
is used to quantify the degree to which the input disagrees with the 
training data

• Main idea: Train an appropriate neural network architecture which 
can be used in real-time for assurance monitoring
} Generate multiple examples sampled from a learn representation from 

the training distribution 
} Compute a nonconformity measure (NCM) to evaluate the degree to 

which a new example disagrees with the distribution of training data
} Compute empirical p-values used for statistical significance testing
} Perform a randomness test to based on the p-values to evaluate if the 

generated examples are from the distribution of training data
} Compute an assurance measure based on the randomness test



VAE-Based Nonconformity Measure
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} Given an input example at time t, the encoder portion of the VAE is used to 
approximate the posterior distribution of the latent space

• Typically, the posterior of the latent space is approximated by a Gaussian distribution

} Sampling from the posterior generates multiple encodings so that the decoder is 
exposed to a range of variations of the input example

• An in-distribution input should be reconstructed with a relatively small reconstruction error. 

• Conversely, an out-of-distribution input will likely have a larger error. 

} The reconstruction error is a good measure of the strangeness of the input relative 
to the training set and it is used as the nonconformity measure

Original Image Reconstructed Image

small p-values indicating an out-of-distribution input. In the
latter case, the martingale will grow and can be used as an
input to a detector that raises alarms.

In the following, we describe how VAE and SVDD are
used to compute the nonconformity measure and detect out-of
distribution examples. Although the idea is similar, the two
architectures lead to different algorithms for computing the
sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input
example zt at time t, the encoder portion of a VAE is used
to approximate the posterior distribution of the latent space
and sample multiple points xk from the posterior that are
used as input to the decoder portion in order to and generate
new examples z01, . . . , z0N . Typically, the posterior of the latent
space is approximated by a Gaussian distribution. Sampling
from the posterior generates encodings xk so that the decoder
is exposed to a range of variations of the input example and
outputs z01, . . . , z

0
N which satisfy the exchangeability assump-

tion.
An in-distribution input zt should be reconstructed with

a relatively small reconstruction error. Conversely, an out-
of-distribution input will likely have a larger error. The re-
construction error is a good evaluation of the strangeness of
the input relative to the training set and it is used as the
nonconformity measure. We use the squared error between
the input example zt and each generated output example z0k
as the nonconformity measure defined as

↵0
k = AVAE(zt, z

0
k) = ||zt � z0k||2. (3)

The p-value pk for the input z0k is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to ↵0

k using Eq. (1). Since the examples
z01, . . . , z

0
N satisfy the exchangeability assumption, the pk

values are independent and uniformly distributed in [0, 1] (see
discussion in Section III) and the martingale method can be
used to test if z01, . . . , z0N , and therefore zt, are generated from
the probability distribution of the training data.

2) Martingale test: At runtime, for every new input exam-
ple zt received by the perception or end-to-end control LEC
at time t we compute the martingale

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

NY

k=1

✏p✏�1
k d✏.

Mt will have a large value if there are many small p-values
in the sequence pk which will indicate an out-of-distribution
input.

3) Stateful detector: In order to robustly detect when
Mt becomes consistently large, we use the Cumulative sum
(CUSUM) procedure [19]. CUSUM is a nonparametric stateful
test and can be used to generate alarms for out-of-distribution
inputs by keeping track of the historical information of the
martingale values.

The detector is defined as S1 = 0 and St = max(0, St�1+
Mt�1 � �), where � prevents St from increasing consistently

when the inputs are in the same distribution as the training
data. An alarm is raised whenever St is greater than a threshold
St > ⌧ which can be optimized using empirical data [19].
Typically, after an alarm the test is reset with St+1 = 0.

Algorithm 2 describes the VAE-based real-time out-of-
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learned VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end-to-end
LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), number of examples to be sampled N ,
stateful detector threshold ⌧ and parameter �

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: for k = 1 to N do

3: Sample z0k using the trained VAE
4: ↵0

k = AVAE(zt, z0k)

5: pk,=
|{i=m+1,...,l} |↵i�↵0

k|
l�m

6: end for

7: Mt =
R 1
0

QN
k=1 ✏p

✏�1
k d✏

8: if t = 1 then

9: St = 0
10: else

11: St = max(0, St�1 +Mt�1 � �)
12: end if

13: Anomt  St > ⌧
14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based
method also uses a learned model to calculate the non-
conformity score. The proper training set is used to train
the deep SVDD model. The center of the hypersphere c
is fixed as the mean of the representations from the initial
pass on the proper training data. After training, the neural
network function �(zt,W⇤) maps an input example zt to a
representation close to the center c. In-distribution inputs are
likely concentrated in a relatively small area in the output
space while the out-of-distribution inputs will be faraway from
the center. The distance of the representation to the center c of
the hypersphere can be used to evaluate the strangeness of the
test example relative to the proper training set and is defined
as the nonconformity measure

↵0
t = ASVDD(zt) = ||�(zt;W⇤)� c||2.

The p-value is computed as the fraction of calibration exam-
ples that have nonconformity scores greater than or equal to
↵0
t (Eq.(1)). However, in contrast to the VAE, SVDD is not a

generative model and cannot be used to generate multiple IID
examples similar to zt.

5

Nonconformity measure



Advanced Emergency Braking System (AEBS)

21

Data Generation using CARLA simulator } Learning-Enabled Components
• Perception: CNN with 11 layers

• Control: Reinforcement learning 
controller trained using DDPG

• VAE: CNN encoder with 4 layers, 
1024 FC layer, and symmetric 
decoder

• SVDD: 4 convolution layers and 1568 
FC layer

2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t�N+1, t], and given
an input sequence (zt�N+1, . . . , zt), we compute the sequence
of p-values (pt�N+1, . . . , pt). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

tY

i=t�N+1

✏p✏�1
i d✏.

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (zt�N+1, . . . , zt) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale Mt does not depend
on the order of the input examples (zt�N+1, . . . , zt) . Also,
Mt must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute Mt, we employ a stateless detector based
on the value Mt and a predefined thershold ⌧ expressed as
Mt > ⌧ .

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), sliding window size N , stateless detector
threshold ⌧

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: ↵0
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |↵i�↵0

t|
l�m

4: Mt =
R 1
0

Qt
i=t�N+1 ✏p

✏�1
i d✏

5: Anomt  Mt > ⌧
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32GB RAM memory and a single
RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
filters with ReLU activations and 2 ⇥ 2 strides, two layers
of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1
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2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t�N+1, t], and given
an input sequence (zt�N+1, . . . , zt), we compute the sequence
of p-values (pt�N+1, . . . , pt). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

tY

i=t�N+1

✏p✏�1
i d✏.

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (zt�N+1, . . . , zt) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale Mt does not depend
on the order of the input examples (zt�N+1, . . . , zt) . Also,
Mt must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute Mt, we employ a stateless detector based
on the value Mt and a predefined thershold ⌧ expressed as
Mt > ⌧ .

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), sliding window size N , stateless detector
threshold ⌧

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: ↵0
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |↵i�↵0

t|
l�m

4: Mt =
R 1
0

Qt
i=t�N+1 ✏p

✏�1
i d✏

5: Anomt  Mt > ⌧
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32GB RAM memory and a single
RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
filters with ReLU activations and 2 ⇥ 2 strides, two layers
of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1
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𝑑! 100 m approximately

𝑣! Randomly sampled between 
90 and 100 km/h

𝐿"#$ 1 m

𝐿"%& 3 m

CARLA precipitation
parameter 𝑟

Randomly sampled 
between 0 and 20

Sampling period 1/20 sec = 50 ms

Execution TimesFalse alarms and average delay
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In-distribution Out-of-distribution 

Simulation Results
Distribution Shift due to Weather
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No attack Attack 

Simulation results
Adversarial input



Highlights
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} Train LECs that allow effective assurance monitoring based 
on deep learning and statistical significance testing

} Integration into a toolchain for model-based design of 
cyber-physical systems with learning-enabled components

} Evaluation with simulators
• Small number of false positives and detection delay
• Execution time is comparable to the execution time of the 

original LECs



ALC Toolchain

Continued
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LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build 
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost



LEC Construction:
3. Evaluation: Testing/Verification
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} Trained Neural Net can be tested in the 
simulator with another experiment model

} Performance metrics are recorded for 
LEC evaluation, e.g.:
} Distance from ideal path
} Pipe within camera field of view 

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s



Verification of Deep Neural Networks

Taylor Johnson and team

28



} Given a NN F & an input set 𝒳, the output reachable set of F is 
𝒴 = 𝑦 𝑦 = 𝐹 𝑥), 𝑥 ∈ 𝒳

} Computationally: Given a NN F, a convex initial set of inputs I represented 
as a polytope poly(𝒳), compute the output set Y = F(I) of the network

Input 
Set𝒳

Output 
Set 𝒴

Property P

LEC Verification: Reachability Analysis of 
Feedforward/Convolutional Neural Networks

Layer-by-Layer Propagation 
of Polytopes
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I=poly(𝒳)

𝐼 = 𝑥 𝐴𝑥 ≤ 𝐵, 𝑥 ∈ 𝑅!} 𝑌 = 𝐹 𝐼 = ?



Closed-Loop Control with LECs:
Verification Flow and Tools

30

https://github.com/verivital/hyst https://github.com/verivital/nnv
https://cps-vo.org/group/hyst https://github.com/verivital/nnmt

} Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF 
formats
} Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over 

intervals of real time according to ordinary differential equations (ODEs)
} Hybrid behaviors: discrete transitions and continuous trajectories over real time
} Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, …

} LEC and cyber models: for now, feedforward neural networks, represented in ONNX
format (compatible with Keras, Tensorflow, Matlab, etc.)
} ReLUs, CNNs (max pool, etc.), tanh, sigmoid, …

} Specifications: primarily safety properties for now, some reachability properties
} Verification: composed LEC and plant analysis: autonomous closed-loop CPS

} Bounded model checking: k control periods, alternating reachability analysis of controller and plant

Communication Networks

Interfaces

Sensors 

Actuators 

Physical 
Environment, 

Plant, 
Humans, …

LECs 
Cyber 

Components
/Software/ 

Controller(s)

HyST nnv + nnmt

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt


Symbolic State-Space Representation: 
Star Sets

31

Illustration of overapproximation conservativeness for different symbolic state-space 
representations (zonotopes, abstract domains, approximate star sets, and exact star sets) 
within an ACAS Xu benchmark, illustrating the accuracy provided by star set 
representations, as they are the smallest sets

Star sets minimize overapproximation error, 
so properties may be efficiently verified with them 
versus other symbolic state space representations 
that are too imprecise (zonotopes, abstract 
domains, polytopes, intervals, etc.) as in DeepZ, 
DeepPoly, ReluVal, …



Counterexample Construction

32

Our approach can construct a “complete” set of counterexamples for NNs



UUV One-step Safety Verification
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§ One-step Safety verification for NGC UUV 
§ (LEC-1 + UUV plant model )

LEC-2 LEC-1 PID UUV
Perception Reference

Command

Speed, Heading

2 Pipe Info

2 Obstacle Info

Dynamics

Side Looking Sonar
(SLS)

Navigation Sensors

System Identification

ENVIRONMENT

Speed, Heading, Depth

Forward Looking Sonar
(FLS)

Sonar image

2 Others Info



UUV One-step Safety Verification
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NGC UUV One-step Safety Verification
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UUV does not collide with the obstacle

Obstacle



Robustness Verification of Perception
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Is VGG16 robust with FGSM attack for 𝒂 ≤ 𝟐×𝟏𝟎%𝟖 ?
Disturbed images = Original image + a x Noise



VGG16 and VGG19 Verification
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} One of the most accurate image classifiers
} ~93% accuracy in top-5 classification on ImageNet

} VGG16: 16 layers, 138M parameters
} VGG19: 19 layers, 144M parameters
} Classify images into 1000 classes, e.g., car, horse, bell pepper, …

} Layers of interests
} Convolutional layer
} Average pooling layer
} Max pooling layer
} Fully connected layer
} ReLU layer

Fundamental Research - Contract FA8750-18-C-0089



VGG16 Robustness Verification
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} Reachable set computation time: 518 seconds

} Verifying Robustness Time: 56 seconds

} Number of ImageStars in the output reachable set: 8
} Total Verification Time: 574 seconds (≈ 10 minutes)
} Number of cores: 1
} Robust? Yes



VGG19 Robustness verification:
Counter-examples

39

Counterexample generation



Runtime (Online) Verification of Autonomous 
Systems with Real-Time Reachability

40

} While improving confidence of such LECs before they are deployed 
is important, online monitoring at runtime is essential

} How can we provide formal and provable guarantees of system-
level behaviors, such as safety, online at runtime?
} Key idea: abstract LEC behaviors (see other approaches on out 

of distribution detection, etc.) and simply observe the influence 
of their behavior on plant/system-level at runtime

} Necessary technology: online reachability analysis of plant 
models, ideally with worst-case execution time (WCET) 
guarantees for implementation in embedded hardware

} Builds on real-time reachability of linear/nonlinear ordinary 
differential equations (ODEs) and hybrid automata with WCET 
guarantees, implemented as an anytime algorithm [FORTE’19, 
TECS’16, RTSS’14]

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/

http://www.verivital.com/rtreach/


Supervisory Control and Monitoring
LECs in the Loop
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} Complex controller: can do anything, be output from LECs, etc., abstracted to just 
produce control inputs (u) for the plant

} Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE]) 
plant model available, and controller input remains fixed over finite time horizon

} Supervisory control via Simplex architecture
} Check these control inputs on closed-loop for a finite time horizon using 

reachability analysis with real-time (WCET) guarantees, if there’s a 
problem, fall back to safety strategy

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex 
Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’14]

https://github.com/verivital/rtreach

Real-time reachability 
algorithm implementation is 
cross-platform C (x86, ARM, 
AVR, etc.) with no dynamic 
memory allocation, recursion, 
or library dependencies

u

https://github.com/verivital/rtreach


Safety Verification with Reachability
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} Safe if intersection of overapproximation of reachable 
states with unsafe states is empty (soundness)

Initial
States

Unsafe
States

Reachable 
States

Overapproximation of
Reachable States

If safe, then red 
trajectory reaching an 
unsafe state cannot 
exist 

All trajectories
contained in 
reachable states



F1/10 Ground Vehicle End-to-End (E2E) 
LEC Demo
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} End-to-end (E2E) controller: takes 
images and produces steering 
control inputs

} Classification-based control: 
determining steering angle 
(straight, weak left, weak right, 
etc.) with fixed speed

} Reachable sets visualized below 
right: if intersection with obstacles 
occurs, use fallback safety 
controller

} Plant model: nonlinear ODEs 
(bicycle, Ackermann steering)



F1/10 Ground Vehicle Demo Comparison

E2E Control Without 
Runtime Verification: 
collisions

E2E Control With Runtime 
Verification: no collisions

44

Complex controller: VGG-based neural network taking camera images as input and 
producing steering angles at constant vehicle speed (1m/s)
Safety controller: slower vehicle speed (0.7m/s) gap following method



Runtime Performance Evaluation
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} Evaluated 20 runs each with E2E and RL based controllers 
monitored with real-time reachability, on NVIDIA Jetson 
TX2 (ARM), running on Denver 2 cores

} Mean execution time overhead: ~7-20ms



[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18]
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19]
[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al, “NNV: The Neural Network Verification Tool for Deep Neural Networks and 
Learning-Enabled Cyber-Physical Systems”, CAV’20]
[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20]
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20]

Feedforward Neural 
Networks (FFNN)

Neural Network 
Control Systems (NNCS)

Convolutional Neural 
Networks (CNN)

Reachability 
Solvers

Visualizer

Verifier
𝑴 ⊨ 𝑺?

The Neural Network Verification (NNV) Tool

No: bug

Yes: proof

𝑺 ≜ ¬

𝑴 ≜

Previous work:
Design-Time (Offline) Verification with NNV
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Tool available standalone: https://github.com/verivital/nnv
Also integrated in Vanderbilt ALC toolchain

[Eykholt et al, CVPR 2018]

𝑺 ≜ ¬

https://github.com/verivital/nnv


ALC Toolchain

Continued

47



LEC Construction:
3. Evaluation: Testing/Verification

48

} Trained Neural Net can be tested in the 
simulator with another experiment model

} Performance metrics are recorded for 
LEC evaluation, e.g.:
} Distance from ideal path
} Pipe within camera field of view 

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s



Toolchain Automation
Workflow Models
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} Workflow models are for the specification and execution of job graphs
} Each workflow job specifies execution of one or more activity models
} Data dependencies between jobs are handled automatically

} Workflow supports
} Loops – For (parallel), while/ do-while (sequential)
} Transforms - Filter / Join (subset or aggregation of results )
} Branch – execution path based on user-specified condition

} Example workflow to train and optimize a LEC



Toolchain Automation
Support for Data Provenance

50

} All artifacts – generated during data 
collection, training, evaluation

} Recorded for each execution:
} Parameter settings
} LEC(s) Models (Deployed/Initial)
} Data used in training, validation and 

evaluation
} Allows re-execution of any step/workflow
} Track the evolution of data/ LECs/ 

Assurance
} Maintain traceability links at each stage 

to:
} Data used in training LECs
} Initial trained model used in training 

LECs
} LECs used in generating data 

sets/Assurance

SimData

System Version

Trained
LEC 
Weights

Parameters

V1 V22

Assurance
Monitor

Workflow

Data 
Collection
Workflow

Trained
AM Data



System Assurance Case: GSN
• Top-level goals correspond 

to high level safety claims

• Leaf goals correspond to 
claims which can be directly 
supported by 
evidence/solutions

• Evaluation metrics from LEC 
experiments can be used as 
evidence for leaf goals

• User Defined Combination 
Logic (E.g. M-of-N, etc.)

51 Example GSN Model for UUV

Cross-Referencing 
Components, Datasets,
for Context/Evidence



Summary: ALC Toolchain
Design Automation for CPS with LEC-s
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} Problem
How to support the engineering: i.e. design, analysis, 
implementation, and assurance of CPS that include 
Learning-Enabled Components (LEC)? 

} Technical Approach
A model-based, tool-enhanced engineering process 
assists in the construction, analysis, verification, and 
assurance of LECs in the context of the engineered 
system

} Results
Comprehensive model-based design automation 
toolchain that directly supports training data 
collection, training, verification, and assurance of 
LEC-based CPS, in addition to conventional model-
based systems and software engineering activities 
(architecture modeling and analysis, software 
synthesis, simulation, and others). All activities are 
configured and orchestrated via graphical models, all 
engineering data (including training data) is archived 
in a version-controlled project database, for 
reproducibility. 

Hartsell, Ch. Et al. "Model-based design for CPS with learning-enabled components." In Proceedings of the Workshop on Design Automation for 
CPS and IoT, pp. 1-9. ACM, 2019.


