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Project challenge
AI/ML in Cyber-Physical Systems

“Our vision is to ... create a new design flow that extends from design-time to
operation time, re-interprets the traditional assurance argumentation to become a
dynamic, operational concept. Our ultimate goal is to establish a fusion of model-
and component-based methods with data-driven methods.”
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Project activities

» Thrusts:

Verification: formal and/or coverage-
driven verification of safety / robustness

properties of components, subsystemes,
(e

and systems, at design-time and at run-
time, to provide evidence for assurance
arguments

. Toolchain (Design-time)
Assurance: construction and

continuous monitoring of logical
arguments that demonstrate the truth
or strength of a safety claim based on
available evidence

Toolchain: design-time and run-time
software tools to implement and
support the above, for real systems
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kTooIchain (Run-time)/




ALC Toolchain Approach

System
Integrator

LEC
Developer

supports training, verification
and design-time assurance of
learning enabled components.
* Toolchain helps with
developing safety assurance
cases for the system using
collected evidence.
* Complete provenance tracking
of experimental runs and data
collection is supported.
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ALC Toolchain



ALC Toolchain Concepts
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ALC Design Workilow
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Modeling Blocks, Systems, Training, & Execution

Model Systems

= odeing * Block Library
* Messages/Datatypes for Software
-E * System Structure
<< Construction >>

T Construct Experiments
* Data Collection
e LECTraining
* Assurance

<< V&VE&A >>

> VeveR Verification,Validation, and Assurance

* Formal System Verification
* LEC Validation
e Assurance Argument Modeling

<< Workflows >>

4. Workflows

Workflows:
ca * Create/Execute Sequences of Operations
<< DataSets >> Data Se.ts: . . .
5. DataSets * Maintain Data Created via Construction Workflows
* Track Data Provenance
@ * Launch analysis of data




Components:

Data Models, Messages Hardware, Software/LEC
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System architecture models:
SysML block diagrams -

And Assemblies
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Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility
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Code generation:
ROS Skeleton Code

» Generate implementation source code (skeleton) and launch files for the

components from architectural models

Preserve custom code (‘business logic”) when re-generating

Boilerplate code for interfacing with LECs

Launch files generated for individual components and composed system

» Automatically deploy & build ROS Packages
ROS source code and launch files

<<Node>>
LEC1 Optimal Control

E’ELEC Act, HSDE ROS Code
gState resuItE Generator
gSAS Sc. status/=

;)riStop Sim

self.meodels_dir = rospy.get_param("~medels_dir",
self.network_json = rospy.get_param("~network_jscn",
self.num agents = rospy.get_param("~num en
self.testing = rospy.get_param("~testing”,"
self.use_lec2 = rospy.get_param("~use_lec2",
self.weights_dir = rospy.get_param("~weights_dir","$(arg weights_dir)")
self.world_lat = rospy.get_param("~world_lat",
self.world_lon = rospy.get_param("~world lon","$(arg origin longitude)"™)
self.deployment_folder = rospy.get_param("~rl_mecdel dir")
self.network_interface = None

self.assurance_monitor_paths=[];

27 class LEC1 Optimal Controllmplementation(cbject):
Class to contain Developer implementation.
def _ init__ (self):
Definiticn and initialization of class attributes
self.agent_json = rospy.get_param("~agent_jscn","$(arg agent_json)")
self.fls_clustering_neighborhood = rospy.get_param("~fls_clustering neighborhoed”, "$(
self.lat_ref = rospy.get_param("~lat_rei","$(arg vehicle_latitude)")

self.lon_ref = rospy.get_param("~lon ref","s(arg vehicle_ longitude)")
self.min fls_samples = rospy.get_param("~min_Ils_samples","$(arg min_fls_samples)")

"$(arg rl_medel dir)")

"% (arg network_jscn)")
% (arg num agents)")

rg testing)")
$(arg use_lec2)")

arg origin_latitude)")

elf.ams = "'
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LEC Construction:

1. Data Coll.ection/

<< Environment >

Mission Environment EnVi ronment +

« ULV should follow MOdEI

the pipe on the

<< Params »>

:, __________________ : ------------- ExecutionParams
1 ! Name Value
¥ ¥
1 << AssemblyModel >> upload true
Implementation Feraanion |
Alternative == record true
gui false
timeout 12
Campa
campalg z
unpause_timeout | 5
Parameter _ <Result>
Parameter  Values Result fs_path_prefix
Sweep e
- 314159
15_bend_pipe.
Pipe_name | 4 bend_pipe

Remote job: launching of
dockers, management of
results.

»  Assembly model selects a specific implementation variant of a system architecture

Dockerized ALC-toolchain
services for portability

GAZEBO

»  Mission, Environment, and Execution parameters set up the experiment scenario
»  Campaigns across parameters a configurations related to system and environments

» Tool generates configuration file for running the simulation, captures results + meta data for all trials
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LEC Construction:
2. Training

» Neural Net model and parameters
specified in “LEC Model”

» “Training Data” links to data
generated from previous
experiments

» Training job is dispatched to worker
machines (typically with GPUs)

» Results and metadata are saved
from the training sessions

<< Params =>

<<TrainingData>>Z
File

4----------»“

result-DataGen_PipeFollower-1542125401110
result-DataGen_PipeFollower-1542129035690

result-DataGen_PipeFollower-1542140169160

Params
Name Value
batch_size 64
epochs 5
useful_data_fraction | 0.5
train_data_fraction 0.7
image_height 492
image_width 768
color_depth 3
loss keras.losses.mean_squared_error
optimizer keras.optimizers.Adam()
metrics accuracy
upload true
Type
metadata json
metadata.json
metadata.json




LEC Construction
2. Training: Assurance Monitor

<< AssuranceMonitorSetup >> E=3

LEC1_AM - | ‘
Mission << Environment >>_*

- Follow pipes using —

« Deploy and run
assurance monitor

1 << TrainingData >> i P e H
=< Params >> TrainingData i s
R ——————— ¥
e = << AssemblyModel >> =< Params >>
IVER ExecutionParams
Parameter value <tecmece G| | | Deploy trained LEC, build ==
RL_LEC1 P y ’ ) 6? Parameter Value

Cathebicraiscci BN I assurance monitor.
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Assurance Monitors

Xenofon Koutsoukos and team



Assurance Monitoring in Learning-Enabled
CPS

LEC and Conformal
Cadlibration Prediction
2+

Design of Monitoring N
Monitoring B based on . :/\._ .

End-to-end control

Environment

Perception fm=======p.  Control »Autongmous_
Vehicle
4 |

Assurance monitoring based on
inductive conformal anomaly detection
* Variational autoencoder (VAE)

* VAE for regression/classification

* Adversarial Autoencoder (AAE)

* Deep support vector description (SVDD)

e Evaluation
Self-driving simulator (and open datasets)
Autonomous underwater vehicle



Real-Time Detection of Dataset Shifts

» LECs may compromise system safety when their predictions may
have large errors

When the runtime data are different than the data used for training.

» Approach based on inductive conformal prediction and anomaly
detection

Neural network architectures to compute efficiently the nonconformity of
new inputs relative to the training data.

Multiple examples sampled from generative models to improve robustness
of detection:Variational Autoencoder (VAE)

Saliency maps that identify parts of the input that contribute most to the
LEC predictions improve robustness.

» Evaluation results
Small detection delay
Small number of false alarms
Execution time comparable to the execution time of the original LECs.



Novelty Detection in High-Dimensional
Time-series

- In autonomous systems, inputs are high-dimensional sensor
measurements (e.g., camera, LiDAR) and arrive one by one based on
the sampling rate of the sensors

- After observing each input, inductive conformal anomaly detection
is used to quantify the degree to which the input disagrees with the
training data

- Main idea: Train an appropriate neural network architecture which
can be used in real-time for assurance monitoring

Generate multiple examples sampled from a learn representation from
the training distribution

Compute a nonconformity measure (NCM) to evaluate the degree to
which a new example disagrees with the distribution of training data

Compute empirical p-values used for statistical significance testing

Perform a randomness test to based on the p-values to evaluate if the
generated examples are from the distribution of training data

Compute an assurance measure based on the randomness test



VAE-Based Nonconformity Measure

Reconstructed Image

Original Image

Nonconformity measure

oy, = Avag(zt, 23) = |20 — 23| |7

» Given an input example at time t, the encoder portion of the VAE is used to
approximate the posterior distribution of the latent space

- Typically, the posterior of the latent space is approximated by a Gaussian distribution

»  Sampling from the posterior generates multiple encodings so that the decoder is
exposed to a range of variations of the input example

- An in-distribution input should be reconstructed with a relatively small reconstruction error.
- Conversely, an out-of-distribution input will likely have a larger error.

» The reconstruction error is a good measure of the strangeness of the input relative
to the training set and it is used as the nonconformity measure

20




Advanced Emergency Braking System (AEBS)

e~
&
t~

d() m min 0 )
: : : : Perception Dlstance: C(Eltol Brake »| Vehicle
. :—) : : :n 1 Velocity
Data Generation using CARLA simulator » Learning-Enabled Components
do oimapprXmatCly Perception: CNN with || layers
Yo Randc;rgly sczlng(I)elc(l b/ehtween Control: Reinforcement learning
an m controller trained using DDPG
Loni | m
min VAE: CNN encoder with 4 layers,
Linax 3m 1024 FC layer, and symmetric
CARLA precipitation Randomly sampled decoder
parameter 7 sebyeEn W A0 - SVDD: 4 convolution layers and 1568
Sampling period 1/20 sec = 50 ms FC layer
Execution Times
False alarms and average delay == —
; ; )1 (ms) Qz(ms) Qs (ms)
False positive False negative CETEE (el (ms) ¢ (ms)
(frames)
2/108 0/92 17.91 34.61 34.75 34.78 34.82 35.10

21



Simulation Results
Distribution Shift due to Weather
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Simulation results
Adversarial input
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Highlights

» Train LECs that allow effective assurance monitoring based
on deep learning and statistical significance testing

» Integration into a toolchain for model-based design of
cyber-physical systems with learning-enabled components

» Evaluation with simulators
Small number of false positives and detection delay

Execution time is comparable to the execution time of the
original LECs

24



ALC Toolchain

Continued



LEC Construction
2. Training: Assurance Monitor

<< AssuranceMonitorSetup >> E=3

LEC1_AM - | ‘
Mission << Environment >>_*

- Follow pipes using —

« Deploy and run
assurance monitor

1 << TrainingData >> i P e H
=< Params >> TrainingData i s
R ——————— ¥
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IVER ExecutionParams
Parameter value <tecmece G| | | Deploy trained LEC, build ==
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Cathebicraiscci BN I assurance monitor.
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LEC Construction:

3. Evaluation: Testing/Verification

UUV should follow pipe

using trained Neural
Network to identify the
pipe and determine an

appropriate heading. Pipe
should be kept in view of

the camera at all times.

» Trained Neural Net can be tested in the
simulator with another experiment model

» Performance metrics are recorded for

<< Environment >>
Environment

|
¥

ECA_A9_LEC_PathP...

<< AssemblyModel >>

Ve

<<Result>> [
Result

LEC evaluation, e.g.:

<< Params >>

ExecutionParams
Parameter Value
upload true
fs_path_prefix iccps-demo
record true
gui false
timeout 100
unpause_timeout 45
lec_assurance_monitor | true

Distance from ideal path

Pipe within camera field of view

27

Analysis in Jupyter Notebook

Also, “single step” the process

for debugging

Version Controlled
Model Database

Users I

Return Metadata

Schedule Jobs.

Execute on Remote Server/s

v

Name
result-NN_Training_Test-1542127634867

result-NN_Training_Test-1542128784700

Store/Fetch
Generated Dat;

25
5 20
£
o
g 15
o
8 10
o
S os
s
2 o0
£
w
-05
_l 0 T T T T T
20000 40000 60000 80000 100000
SFTP Fileserver Time (ms)
20 {— Ppitch Command F10
a Pitch Error
—— Desired Pitch
08
ET!@ 15 -—— Current Pitch
E 06
Execution Servers (:) 10
04
£
2
. 05
e 102
00 00
0 20000 40000 60000 80000 100000
Time (ms)
Training Model Data Managed on GitLab
Type Size Creation Date
model.keras 2678 11/13/2018 ox
model keras 2678 11/13/2018 ox

Results in file store + git, cross-linked for data provenance

Pitch Command



Verification of Deep Neural Networks

Taylor Johnson and team



LEC Verification: Reachability Analysis of
Feedforward /Convolutional Neural Networks

» Given a NN F & an input set X, the output reachable set of F is
Y={yly=F),xe€X} Property P

» Computationally: Given a NN F a convex initial set of inputs | represented
as a polytope poly(X), compute the output setY = F(l) of the network

-—> —»h

I ={x|Ax < B,x € R"} Y = F() =7

Layer-by-Layer Propagation °;
of Polytopes '




Closed-Loop Control with LECs:
Verification Flow and Tools

H)'ST / Communication Networks \ nnv + nnmt
" Physical LECs
) Sensors
Environment, Cyber
Plant, Interfaces Components
Humans, ... Jyo— /Software/

Controller(s)//

» Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF
formats

Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over
intervals of real time according to ordinary differential equations (ODEs)

Hybrid behaviors: discrete transitions and continuous trajectories over real time
Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, ...

» LEC and cyber models: for now, feedforward neural networks, represented in ONNX
format (compatible with Keras, Tensorflow, Matlab, etc.)

ReLUs, CNNs (max pool, etc.), tanh, sigmoid, ...
» Specifications: primarily safety properties for now, some reachability properties
» Verification: composed LEC and plant analysis: autonomous closed-loop CPS
Bounded model checking: k control periods, alternating reachability analysis of controller and plant

30


https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt

k-Loft
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@

Symbolic State-Space Representation:
Star Sets

1452 ¢ 1.3}
5 14851

1457

Abstract-domain 0.35

1448} 1.2}

1.15}
14.8 |
03! 11}

1.05}

Weak-Right
Strong-Left
Strong-Right

1475}
095

0.2}

Exact Star 091

Approximate Star

147 ¢

0.15 08}

16.216.416.616.8 17 17.2174 16.216.416.616.8 17 17.2174 16.216.416.616.8 17 17.2174 16.216.416.6 16.8 17 17.2174
coc coc coc coc

Illustration of overapproximation conservativeness for different symbolic state-space
representations (zonotopes, abstract domains, approximate star sets, and exact star sets)
within an ACAS Xu benchmark, illustrating the accuracy provided by star set
representations, as they are the smallest sets

Zcr . Star sets minimize overapproximation error,

1 so properties may be efficiently verified with them
versus other symbolic state space representations
that are too imprecise (zonotopes, abstract
domains, polytopes, intervals, etc.) as in DeepZ,
DeepPoly, ReluVval, ...

Weak-Right




Counterexample Construction

Our approach can construct a ““‘complete” set of counterexamples for NNs

32



UUV One-step Safety Verification

= One-step Safety verification for NGC UUV
(LEC-1 + UUV plant model )

2 Others Info

2 Pipe:Info N Command
| >
|

I
2: Obstacle Info

Sonar image Speed,(Heading Speed, Heading, Depth

33



UV One-step Safety Verification

World Insert Layers

Gul
Scene
Spherical Coordinates
Physics
Atmosphere
wind
Models
» world_ned
w 10km_seabed Sonarimage
LINKS

System Identification

ocean_link Side Looking Sonar
b ivero
b pipe_0_0
b pipe_1. 0
b pipe_2 0
P pipe 30
Property Value
name 10km_seabed.:s.
self_collide W False
gravity W rase
kinematic W rFase
canonical & Toe
enable_wind W rase
P pose
b inertial
» wind
P collision 10km_seabed::s
P visual 10km_seabed:s
b visual 10km seabed:'s

|| | Steps: 1, Real Time Factor: Sim Time: Real Time: Iterations: . Reset Time




y-pos

NGC UUV One-step Safety Verification

ReachSet LEC1+SysID
T |

200 I
180 —
o obstacle
160 - I Reach Sets
== SysI|D
=== UJUV (Gazebo)
140 [~ pipe
120 —
100 —
80
60
a0k - l:l «— Obstacle
| | | | | | |
-2000 -1950 -1900 -1850 -1800 -1750 -1700 -1650

UUYV does not collide with the obstacle
35



Robustness Verification of Perception

224 x 224 x 3 224 x 224 x 64 VGG]-G

112 x 112 x 128

56|x 56 x 256

S8 xR % BiH TXTx512
X X
) JIAxIAXDIZ 4% 1x4096 1 x1x1000

=7 convolution+RelLU
“{ max pooling
fully nected+RelLU
softmax

Original image
bell pepper

Noise a=1e-6% a=8e-6%
bell pepper

Disturbed images = Original image + a x Noise
Is VGG16 robust with FGSM attack for a < 2x1073 ?
36



VGG16 and VGG19 Verification

» One of the most accurate image classifiers

~93% accuracy in top-5 classification on ImageNet

» VGGI6: 16 layers, 1 38M parameters
» VGGI9: 19 layers, 144M parameters

» Classify images into 1000 classes, e.g., car, horse, bell pepper, ...

» Layers of interests

Convolutional layer
Average pooling layer
Max pooling layer
Fully connected layer
RelLU layer

37

224 x 224 x3 224 x 224 x 64 VGG 16

56{x 56 x 256

R SR B 7x7x512
*5727 714 x 14 x 512

=

1x1x4096 1 x 1 x 1000

= convolution+RelU
max pooling
fully nected +RelU
softmax

Fundamental Research - Contract FA8750-18-C-0089



VGG16 Robustness Verification

» Reachable set computation time: 518 seconds
» Verifying Robustness Time: 56 seconds
» Number of ImageStars in the output reachable set: 8

» Total Verification Time: 574 seconds (= 10 minutes)

1 5 T T T T T

» Number of cores: |
» Robust? Yes

10

Range

o

11.8199015

% 11.819901
c

©

Y 11.8199005

11.8199 : ‘ : : : :
940 942 944 946 948 950 952 954 956 958 960

Index
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VGG19 Robustness verification:
Counter-examples

—
o
[p)

6.2813172

6.2813171

2 6281317

—
)
0
=
©
| -
e
)

6.2813169

6.2813168

6.2813167

6.2813166

I

I

] 1 | 1 | 1

6.2719829 6.271983 6.2719831 6.2719832
Bell Pepper (946)

Original image Adversarial image

‘;,‘V“A

Counterexample generation
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Runtime (Online) Verification of Autonomous
Systems with Real-Time Reachability

» While improving confidence of such LECs before they are deployed
is important, online monitoring at runtime is essential

» How can we provide formal and provable guarantees of system-
level behaviors, such as safety, online at runtime?

Key idea: abstract LEC behaviors (see other approaches on out
of distribution detection, etc.) and simply observe the mfluence

of their behavior on plant/system-level at runtime

Necessary technology: online reachability analysis of plant
models, ideally with worst-case execution time (WCET)
guarantees for implementation in embedded hardware

Builds on real-time reachability of linear/nonlinear ordinary “oe:wecee v

differential equations (ODEs) and hybrid automata with WCET

guarantees, implemented as an anytime algorithm [FORTE’|9,
TECS’16,RTSS’ 4]

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]

[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
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http://www.verivital.com/rtreach/

Supervisory Control and Monitoring
LECs in the Loop

» Complex controller: can do anything, be output from LECs, etc., abstracted to just
produce control inputs (u) for the plant

» Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE])
plant model available, and controller input remains fixed over finite time horizon

» Supervisory control via Simplex architecture

» Check these control inputs on closed-loop for a finite time horizon using
reachability analysis with real-time (WCET) guarantees, if there’s a
problem, fall back to safety strategy

Decision Real-time reachability
Module algorithm implementation is
Ci)onTrEIIT:r A\éi cross-platform C (x86,ARM,
tusor Plant o S AVR, etc.) with no dynamic
T u memory allocation, recursion,
Controller ~ or library dependencies

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex

Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’14]
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https://github.com/verivital/rtreach

Satfety Verification with Reachability

» Safe if intersection of overapproximation of reachable

states with unsafe states is empty (soundness)

If safe, then red
trajectory reaching an
unsafe state cannot
exist

Reachable
States

Initial

States All trajectories

contained in
reachable states

Overapproximation of
Reachable States
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F1/10 Ground Vehicle End-to-End (E2E)
LEC Demo

» End-to-end (E2E) controller: takes
images and produces steering
control inputs

» Classification-based control:
determining steering angle
(straight, weak left, weak right,
etc.) with fixed speed

» Reachable sets visualized below
right: if intersection with obstacles
occurs, use fallback safety
controller

» Plant model: nonlinear ODEs
(bicycle,Ackermann steering)

Xy,v.yaw | Throttle
| Controller

Odometry xy,v.yaw Speed
Information Setpoint
‘ (m/s)

A4 ¥ ackermann
Steerin,

speed duty
cycle ‘

| angle duty " |
cycle

g msg
Image | Bjack Box" Angle (rad) | Decision |
eonii Controller Module |

VESC Motor

——
tte J

c
Laser msg
Scan

Safety

LIDAR TTC
Xy, v.yaw
S >

Laser Scan
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F1/10 Ground Vehicle Demo Comparison

Complex controller:VGG-based neural network taking camera images as input and
producing steering angles at constant vehicle speed (I m/s)
Safety controller: slower vehicle speed (0.7m/s) gap following method
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Runtime Performance Evaluation

4

225
20.0
175

15.0

MeanET (ms)

125

10.0

75

Evaluated 20 runs each with E2E and RL based controllers

monitored with real-time reachability, on NVIDIA Jetson
TX2 (ARM), running on Denver 2 cores

Mean execution time overhead: ~7-20ms

Mean Execution Time

B E2E N
mE RL ¢

Technical Specifications

GPU 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores

¢ CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM® Cortex®-A57 MPCore

Memory 8GB 128-bit LPDDR4 Memory
1866 MHx - 59.7 GB/s

Storage 32GB eMMC 5.1

S R Power 7.5W / 15W
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Previous work:
Design-Time (Offline) Verification with NNV

Tool available standalone:
Also integrated in Vanderbilt ALC toolchain

The Neural Network Verification (NNV) Tool

Feedforward Neural
D o — )
. Networks (FFNN) , _
Visualizer —— - -
uym\"
[ —] Neural Network | Reachability
L TS ] Control Systems (NNCS) Solvers
e — No: bu
Verifier &
. ?
Convolutional Neural MES? L, ves: proof
Networks (CNN)
[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18] A A mm ‘65'3;5
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19] S —t—
[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al,“NNV:The Neural Network Verification Tool for Deep Neural Networks and . SPEED
Learning-Enabled Cyber-Physical Systems”, CAV’20] S £ @ ZM%
[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20]
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20] [Eykholt et al, CVPR 2018]

[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20]
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https://github.com/verivital/nnv

ALC Toolchain

Continued



LEC Construction:

3. Evaluation: Testing/Verification

UUV should follow pipe

using trained Neural
Network to identify the
pipe and determine an

appropriate heading. Pipe
should be kept in view of

the camera at all times.

» Trained Neural Net can be tested in the
simulator with another experiment model

» Performance metrics are recorded for

<< Environment >>
Environment

|
¥

ECA_A9_LEC_PathP...

<< AssemblyModel >>

Ve

<<Result>> [
Result

LEC evaluation, e.g.:

<< Params >>

ExecutionParams
Parameter Value
upload true
fs_path_prefix iccps-demo
record true
gui false
timeout 100
unpause_timeout 45
lec_assurance_monitor | true

Distance from ideal path

Pipe within camera field of view

48

Analysis in Jupyter Notebook

Also, “single step” the process

for debugging

Version Controlled
Model Database

Users I

Return Metadata

Schedule Jobs.

Execute on Remote Server/s

v

Name
result-NN_Training_Test-1542127634867

result-NN_Training_Test-1542128784700

Store/Fetch
Generated Dat;

25
5 20
£
o
g 15
o
8 10
o
S os
s
2 o0
£
w
-05
_l 0 T T T T T
20000 40000 60000 80000 100000
SFTP Fileserver Time (ms)
20 {— Ppitch Command F10
a Pitch Error
—— Desired Pitch
08
ET!@ 15 -—— Current Pitch
E 06
Execution Servers (:) 10
04
£
2
. 05
e 102
00 00
0 20000 40000 60000 80000 100000
Time (ms)
Training Model Data Managed on GitLab
Type Size Creation Date
model.keras 2678 11/13/2018 ox
model keras 2678 11/13/2018 ox

Results in file store + git, cross-linked for data provenance

Pitch Command



Toolchain Automation
Workflow Models

» Workflow models are for the specification and execution of job graphs
Each workflow job specifies execution of one or more activity models
Data dependencies between jobs are handled automatically
» Workflow supports
Loops — For (parallel), while/ do-while (sequential)
Transforms - Filter / Join (subset or aggregation of results )
Branch - execution path based on user-specified condition
» Example workflow to train and optimize a LEC

<< WorkflowJob >>
I Test_Tough
<<WF_Start >> =< x—::: 22 LEC Data p
WF_Start ] - C = j

T
H
H
J << WorkflowJob >> << Loop >> << Transform >> << Branch >>
DataGeneration LEC2_HyperParams... Fitter Branch
WF_Pre. Data WF_input LECs inp_lecs Out_LEC inp_lec True e
<< Loop >> -
Test_Scenarios

<< Loop_Var >> << w:_,.mh::h >>
- pipe_pos_x Transform (“Filter”) — identify =

.. Py LEC D. >
\ LEC with minimum loss from ) e

those generated in the loop.

(_____-

Inner loop — Hyper-parameter search for LEC learning ==

)

Branch — based on the input set —
check the loss value of the LEC

<< WF_Start >>
WF_Start

...........................

|

<< Loop_var>> ; " !

i v 'L fet fund(inp_lec): i

"

WorkflowJob i lec_loss = imp lec[0).get loss()

<< Loop_Var >> SLModelTraining << WF_Output >> ' -’ - i - E <)

optimizer pyvre=—y O ve Tradned_LECs x | rewarn lec_loss and lec_loss < 0.1)
P — [ — return ret_lec ] oy e

) . J

Ledecccccccccccccccccccccca-
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Toolchain Automation
Support for Data Provenance

» All artifacts — generated during data ., |
collection, training, evaluation 5 . g
ata 2 o |
» Recorded for each execution: Collection ==
Workflow

Parameter settings
LEC(s) Models (Deployed /Initial)

Data used in training, validation and

evaluation : = |y

» Allows re-execution of any step/workflow

» Track the evolution of data/ LECs/ S
Assurance T
» Maintain traceability links at each stage Vi
to:
Data used in training LECs Assurance |
Monitor

Initial trained model used in training
LECs

LECs used in generating data
sets /Assurance

50
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7

System Assurance Case: GOSN ———=—

<< GSN_Model >>
SafetyCase

GSN

l

l

<< GSN_Model >>
Sensoryinformation

<< GSN_Model >>
ControllerCorrect

<< GSN_Model >>
ActuatorPerformance

’ Safety Controller

<< GSN_Mode| >>

GSN GSN GSN GSN
N
7 ~
’
’ S
1 .
~
~
/ RS
/ ~
/ ~
/I << GSN_Model >> << GSN_Model >> N
/ LEC-2 LEC-1 Sl
~

GSN N GSN S~o

~

* Top-level goals correspond

* Leaf goals correspond to
claims which can be directly
supported by

evidence/solutions

e Evaluation metrics from LEC

experiments can be used as
evidence for leaf goals

* User Defined Combination
Logic (E.g. M-of-N, etc.)

QOT > 3. VAVAA > Assuranc:
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Example GSN Model for UUV

Assumption

ChoiceJn

Context

atorPerformance

EvidenceSource =

—

Goal

GSN_Model

GSN

Cross-Referencing

for Context/Evidence

Components, Datasets,

InContextRef

Justification

4]

ModelRef c




Summary: ALC Toolchain
Design Automation for CPS with LEC-s

Problem @ s e e e e e e m e m e mm e mm e ——— - - -

How to support the engineering: i.e. design, analysis,
implementation, and assurance of CPS that include
Learning-Enabled Components (LEC)?

Technical Approach

A model-based, tool-enhanced engineering process
assists in the construction, analysis, verification, and
assurance of LECs in the context of the engineered
system

Results

Speed v. Time

Comprehensive model-based design automation
toolchain that directly supports training data
collection, tralnmg, verification, and assurance of
LEC-based CPS, in addition to conventional model-
based systems and software engineering activities
(architecture modeling and analysis, software
synthesis, simulation, and others).All activities are
configured and orchestrated via graphical models, all
engineering data (including training data) is archived
in a version-controlled project database, for
reproducibility.

112 | — eed
—90% conficRgee
— 95% conficie

— 99% confidence

Hartsell, Ch. Et al. "Model-based design for CPS with learning-enabled components." In Proceedings of the Workshop on Design Automation for
CPS and loT, pp. 1-9. ACM, 2019.
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