
Assurance-based Learning-enabled
Cyber-Physical Systems

Gabor Karsai, Xenofon Koutsoukos, Taylor Johnson, Ted Bapty, Abhishek
Dubey, Nag Mahadevan, and many others

Supported by DARPA AA/AFRL

1

Project challenge
AI/ML in Cyber-Physical Systems

2

“Our vision is to … create a new design flow that extends from design-time to
operation time, re-interprets the traditional assurance argumentation to become a
dynamic, operational concept. Our ultimate goal is to establish a fusion of model-
and component-based methods with data-driven methods.”

Model-driven design flow Model-driven design flow with LEC-s

Project activities

3

} Thrusts:
} Verification: formal and/or coverage-

driven verification of safety / robustness
properties of components, subsystems,
and systems, at design-time and at run-
time, to provide evidence for assurance
arguments

} Assurance: construction and
continuous monitoring of logical
arguments that demonstrate the truth
or strength of a safety claim based on
available evidence

} Toolchain: design-time and run-time
software tools to implement and
support the above, for real systems

Verification

Assurance

Toolchain (Design-time)

Verification

Assurance

Toolchain (Run-time)

ALC Toolchain Approach

System
Integrator

• The model driven toolchain
supports training, verification
and design-time assurance of
learning enabled components.
• Toolchain helps with

developing safety assurance
cases for the system using
collected evidence.
• Complete provenance tracking

of experimental runs and data
collection is supported.

LEC
Developer

4

Assurance
Engineer

Ty
pi

ca
l W

or
kf

lo
w

 S
eq

ue
nc

e

ALC Toolchain

5

ALC Toolchain Concepts

6

} Modeling
} System Architecture / SysML

} LEC Construction
} Data collection
} Training
} Evaluation

} Testing -- Verification/Validation/Assurance

ALC Design Workflow

7

} Specialized for LEC development

Workflow/Orchestration

Job JobJob

Modeling Blocks, Systems, Training, & Execution

8

Model Systems
• Block Library
• Messages/Datatypes for Software
• System Structure

Construct Experiments
• Data Collection
• LEC Training
• Assurance

Verification, Validation, and Assurance
• Formal System Verification
• LEC Validation
• Assurance Argument Modeling

Workflows:
• Create/Execute Sequences of Operations

Data Sets:
• Maintain Data Created via Construction Workflows
• Track Data Provenance
• Launch analysis of data

Modeling

9

Data Models, Messages

Components:
Hardware, Software/LEC

Systems: Components/ Subsystems; Parameters,...

World models: Scenarios, Environments, Parameters

System architecture models:
SysML block diagrams

Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility

10

Dynamic Assurance
Process

Assurance
Monitors

Code generation:
ROS Skeleton Code

11

} Generate implementation source code (skeleton) and launch files for the
components from architectural models
} Preserve custom code (‘business logic’) when re-generating
} Boilerplate code for interfacing with LECs
} Launch files generated for individual components and composed system

} Automatically deploy & build ROS Packages
} ROS source code and launch files

ROS Code
Generator

LEC Construction

12

1. Data Collection

2. Training

Select Configuration

3. Evaluation

LEC Construction:
1. Data Collection

13

} Assembly model selects a specific implementation variant of a system architecture

} Mission, Environment, and Execution parameters set up the experiment scenario

} Campaigns across parameters a configurations related to system and environments

} Tool generates configuration file for running the simulation, captures results + meta data for all trials

Implementation
Alternative

Environment
Model

Remote job: launching of
dockers, management of
results.

Dockerized ALC-toolchain
services for portability

Parameter
Sweep

LEC Construction:
2. Training

14

} Neural Net model and parameters
specified in “LEC Model”

} “Training Data” links to data
generated from previous
experiments

} Training job is dispatched to worker
machines (typically with GPUs)

} Results and metadata are saved
from the training sessions

LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost

Assurance Monitors

Xenofon Koutsoukos and team

16

17

Perception Control Autonomous
Vehicle

Environment End-to-end control

Monitoring
based on
Conformal
Prediction

Design of
Monitoring
LEC and

Calibration

Assurance monitoring based on
inductive conformal anomaly detection
• Variational autoencoder (VAE)
• VAE for regression/classification
• Adversarial Autoencoder (AAE)
• Deep support vector description (SVDD)

• Evaluation
Self-driving simulator (and open datasets)
Autonomous underwater vehicle

Assurance Monitoring in Learning-Enabled
CPS

Real-Time Detection of Dataset Shifts

18

} LECs may compromise system safety when their predictions may
have large errors
} When the runtime data are different than the data used for training.

} Approach based on inductive conformal prediction and anomaly
detection
} Neural network architectures to compute efficiently the nonconformity of

new inputs relative to the training data.
} Multiple examples sampled from generative models to improve robustness

of detection: Variational Autoencoder (VAE)
} Saliency maps that identify parts of the input that contribute most to the

LEC predictions improve robustness.
} Evaluation results

} Small detection delay
} Small number of false alarms
} Execution time comparable to the execution time of the original LECs.

Novelty Detection in High-Dimensional
Time-series

19

• In autonomous systems, inputs are high-dimensional sensor
measurements (e.g., camera, LiDAR) and arrive one by one based on
the sampling rate of the sensors

• After observing each input, inductive conformal anomaly detection
is used to quantify the degree to which the input disagrees with the
training data

• Main idea: Train an appropriate neural network architecture which
can be used in real-time for assurance monitoring
} Generate multiple examples sampled from a learn representation from

the training distribution
} Compute a nonconformity measure (NCM) to evaluate the degree to

which a new example disagrees with the distribution of training data
} Compute empirical p-values used for statistical significance testing
} Perform a randomness test to based on the p-values to evaluate if the

generated examples are from the distribution of training data
} Compute an assurance measure based on the randomness test

VAE-Based Nonconformity Measure

20

} Given an input example at time t, the encoder portion of the VAE is used to
approximate the posterior distribution of the latent space

• Typically, the posterior of the latent space is approximated by a Gaussian distribution

} Sampling from the posterior generates multiple encodings so that the decoder is
exposed to a range of variations of the input example

• An in-distribution input should be reconstructed with a relatively small reconstruction error.

• Conversely, an out-of-distribution input will likely have a larger error.

} The reconstruction error is a good measure of the strangeness of the input relative
to the training set and it is used as the nonconformity measure

Original Image Reconstructed Image

small p-values indicating an out-of-distribution input. In the
latter case, the martingale will grow and can be used as an
input to a detector that raises alarms.

In the following, we describe how VAE and SVDD are
used to compute the nonconformity measure and detect out-of
distribution examples. Although the idea is similar, the two
architectures lead to different algorithms for computing the
sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input
example zt at time t, the encoder portion of a VAE is used
to approximate the posterior distribution of the latent space
and sample multiple points xk from the posterior that are
used as input to the decoder portion in order to and generate
new examples z01, . . . , z0N . Typically, the posterior of the latent
space is approximated by a Gaussian distribution. Sampling
from the posterior generates encodings xk so that the decoder
is exposed to a range of variations of the input example and
outputs z01, . . . , z

0
N which satisfy the exchangeability assump-

tion.
An in-distribution input zt should be reconstructed with

a relatively small reconstruction error. Conversely, an out-
of-distribution input will likely have a larger error. The re-
construction error is a good evaluation of the strangeness of
the input relative to the training set and it is used as the
nonconformity measure. We use the squared error between
the input example zt and each generated output example z0k
as the nonconformity measure defined as

↵0
k = AVAE(zt, z

0
k) = ||zt � z0k||2. (3)

The p-value pk for the input z0k is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to ↵0

k using Eq. (1). Since the examples
z01, . . . , z

0
N satisfy the exchangeability assumption, the pk

values are independent and uniformly distributed in [0, 1] (see
discussion in Section III) and the martingale method can be
used to test if z01, . . . , z0N , and therefore zt, are generated from
the probability distribution of the training data.

2) Martingale test: At runtime, for every new input exam-
ple zt received by the perception or end-to-end control LEC
at time t we compute the martingale

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

NY

k=1

✏p✏�1
k d✏.

Mt will have a large value if there are many small p-values
in the sequence pk which will indicate an out-of-distribution
input.

3) Stateful detector: In order to robustly detect when
Mt becomes consistently large, we use the Cumulative sum
(CUSUM) procedure [19]. CUSUM is a nonparametric stateful
test and can be used to generate alarms for out-of-distribution
inputs by keeping track of the historical information of the
martingale values.

The detector is defined as S1 = 0 and St = max(0, St�1+
Mt�1 � �), where � prevents St from increasing consistently

when the inputs are in the same distribution as the training
data. An alarm is raised whenever St is greater than a threshold
St > ⌧ which can be optimized using empirical data [19].
Typically, after an alarm the test is reset with St+1 = 0.

Algorithm 2 describes the VAE-based real-time out-of-
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learned VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end-to-end
LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), number of examples to be sampled N ,
stateful detector threshold ⌧ and parameter �

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: for k = 1 to N do

3: Sample z0k using the trained VAE
4: ↵0

k = AVAE(zt, z0k)

5: pk,=
|{i=m+1,...,l} |↵i�↵0

k|
l�m

6: end for

7: Mt =
R 1
0

QN
k=1 ✏p

✏�1
k d✏

8: if t = 1 then

9: St = 0
10: else

11: St = max(0, St�1 +Mt�1 � �)
12: end if

13: Anomt St > ⌧
14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based
method also uses a learned model to calculate the non-
conformity score. The proper training set is used to train
the deep SVDD model. The center of the hypersphere c
is fixed as the mean of the representations from the initial
pass on the proper training data. After training, the neural
network function �(zt,W⇤) maps an input example zt to a
representation close to the center c. In-distribution inputs are
likely concentrated in a relatively small area in the output
space while the out-of-distribution inputs will be faraway from
the center. The distance of the representation to the center c of
the hypersphere can be used to evaluate the strangeness of the
test example relative to the proper training set and is defined
as the nonconformity measure

↵0
t = ASVDD(zt) = ||�(zt;W⇤)� c||2.

The p-value is computed as the fraction of calibration exam-
ples that have nonconformity scores greater than or equal to
↵0
t (Eq.(1)). However, in contrast to the VAE, SVDD is not a

generative model and cannot be used to generate multiple IID
examples similar to zt.

5

Nonconformity measure

Advanced Emergency Braking System (AEBS)

21

Data Generation using CARLA simulator } Learning-Enabled Components
• Perception: CNN with 11 layers

• Control: Reinforcement learning
controller trained using DDPG

• VAE: CNN encoder with 4 layers,
1024 FC layer, and symmetric
decoder

• SVDD: 4 convolution layers and 1568
FC layer

2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t�N+1, t], and given
an input sequence (zt�N+1, . . . , zt), we compute the sequence
of p-values (pt�N+1, . . . , pt). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

tY

i=t�N+1

✏p✏�1
i d✏.

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (zt�N+1, . . . , zt) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale Mt does not depend
on the order of the input examples (zt�N+1, . . . , zt) . Also,
Mt must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute Mt, we employ a stateless detector based
on the value Mt and a predefined thershold ⌧ expressed as
Mt > ⌧ .

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), sliding window size N , stateless detector
threshold ⌧

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: ↵0
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |↵i�↵0

t|
l�m

4: Mt =
R 1
0

Qt
i=t�N+1 ✏p

✏�1
i d✏

5: Anomt Mt > ⌧
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32GB RAM memory and a single
RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
filters with ReLU activations and 2 ⇥ 2 strides, two layers
of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1

6

2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t�N+1, t], and given
an input sequence (zt�N+1, . . . , zt), we compute the sequence
of p-values (pt�N+1, . . . , pt). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

Mt =

Z 1

0
M ✏

t d✏ =

Z 1

0

tY

i=t�N+1

✏p✏�1
i d✏.

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (zt�N+1, . . . , zt) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale Mt does not depend
on the order of the input examples (zt�N+1, . . . , zt) . Also,
Mt must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute Mt, we employ a stateless detector based
on the value Mt and a predefined thershold ⌧ expressed as
Mt > ⌧ .

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example zt, calibration nonconformity scores

(↵m+1, . . . ,↵l), sliding window size N , stateless detector
threshold ⌧

Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: ↵0
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |↵i�↵0

t|
l�m

4: Mt =
R 1
0

Qt
i=t�N+1 ✏p

✏�1
i d✏

5: Anomt Mt > ⌧
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32GB RAM memory and a single
RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is v0 and the initial distance between the host
car and the obstacle is d0. The goal of the controller is to
stop the car between Lmin and Lmax. The sampling period
used in the simulation is �t = 1/20 s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 ⇥ (5 ⇥ 5)
filters with ReLU activations and 2 ⇥ 2 strides, two layers
of 64/64 ⇥ (3 ⇥ 3) filters with ReLU activations and 1 ⇥ 1

6

𝑑! 100 m approximately

𝑣! Randomly sampled between
90 and 100 km/h

𝐿"#$ 1 m

𝐿"%& 3 m

CARLA precipitation
parameter 𝑟

Randomly sampled
between 0 and 20

Sampling period 1/20 sec = 50 ms

Execution TimesFalse alarms and average delay

22

In-distribution Out-of-distribution

Simulation Results
Distribution Shift due to Weather

23

No attack Attack

Simulation results
Adversarial input

Highlights

24

} Train LECs that allow effective assurance monitoring based
on deep learning and statistical significance testing

} Integration into a toolchain for model-based design of
cyber-physical systems with learning-enabled components

} Evaluation with simulators
• Small number of false positives and detection delay
• Execution time is comparable to the execution time of the

original LECs

ALC Toolchain

Continued

25

LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost

LEC Construction:
3. Evaluation: Testing/Verification

27

} Trained Neural Net can be tested in the
simulator with another experiment model

} Performance metrics are recorded for
LEC evaluation, e.g.:
} Distance from ideal path
} Pipe within camera field of view

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s

Verification of Deep Neural Networks

Taylor Johnson and team

28

} Given a NN F & an input set 𝒳, the output reachable set of F is
𝒴 = 𝑦 𝑦 = 𝐹 𝑥), 𝑥 ∈ 𝒳

} Computationally: Given a NN F, a convex initial set of inputs I represented
as a polytope poly(𝒳), compute the output set Y = F(I) of the network

Input
Set𝒳

Output
Set 𝒴

Property P

LEC Verification: Reachability Analysis of
Feedforward/Convolutional Neural Networks

Layer-by-Layer Propagation
of Polytopes

29

I=poly(𝒳)

𝐼 = 𝑥 𝐴𝑥 ≤ 𝐵, 𝑥 ∈ 𝑅!} 𝑌 = 𝐹 𝐼 = ?

Closed-Loop Control with LECs:
Verification Flow and Tools

30

https://github.com/verivital/hyst https://github.com/verivital/nnv
https://cps-vo.org/group/hyst https://github.com/verivital/nnmt

} Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF
formats
} Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over

intervals of real time according to ordinary differential equations (ODEs)
} Hybrid behaviors: discrete transitions and continuous trajectories over real time
} Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, …

} LEC and cyber models: for now, feedforward neural networks, represented in ONNX
format (compatible with Keras, Tensorflow, Matlab, etc.)
} ReLUs, CNNs (max pool, etc.), tanh, sigmoid, …

} Specifications: primarily safety properties for now, some reachability properties
} Verification: composed LEC and plant analysis: autonomous closed-loop CPS

} Bounded model checking: k control periods, alternating reachability analysis of controller and plant

Communication Networks

Interfaces

Sensors

Actuators

Physical
Environment,

Plant,
Humans, …

LECs
Cyber

Components
/Software/

Controller(s)

HyST nnv + nnmt

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt

Symbolic State-Space Representation:
Star Sets

31

Illustration of overapproximation conservativeness for different symbolic state-space
representations (zonotopes, abstract domains, approximate star sets, and exact star sets)
within an ACAS Xu benchmark, illustrating the accuracy provided by star set
representations, as they are the smallest sets

Star sets minimize overapproximation error,
so properties may be efficiently verified with them
versus other symbolic state space representations
that are too imprecise (zonotopes, abstract
domains, polytopes, intervals, etc.) as in DeepZ,
DeepPoly, ReluVal, …

Counterexample Construction

32

Our approach can construct a “complete” set of counterexamples for NNs

UUV One-step Safety Verification

33

§ One-step Safety verification for NGC UUV
§ (LEC-1 + UUV plant model)

LEC-2 LEC-1 PID UUV
Perception Reference

Command

Speed, Heading

2 Pipe Info

2 Obstacle Info

Dynamics

Side Looking Sonar
(SLS)

Navigation Sensors

System Identification

ENVIRONMENT

Speed, Heading, Depth

Forward Looking Sonar
(FLS)

Sonar image

2 Others Info

UUV One-step Safety Verification

34

NGC UUV One-step Safety Verification

35

UUV does not collide with the obstacle

Obstacle

Robustness Verification of Perception

36

Is VGG16 robust with FGSM attack for 𝒂 ≤ 𝟐×𝟏𝟎%𝟖 ?
Disturbed images = Original image + a x Noise

VGG16 and VGG19 Verification

37

} One of the most accurate image classifiers
} ~93% accuracy in top-5 classification on ImageNet

} VGG16: 16 layers, 138M parameters
} VGG19: 19 layers, 144M parameters
} Classify images into 1000 classes, e.g., car, horse, bell pepper, …

} Layers of interests
} Convolutional layer
} Average pooling layer
} Max pooling layer
} Fully connected layer
} ReLU layer

Fundamental Research - Contract FA8750-18-C-0089

VGG16 Robustness Verification

38

} Reachable set computation time: 518 seconds

} Verifying Robustness Time: 56 seconds

} Number of ImageStars in the output reachable set: 8
} Total Verification Time: 574 seconds (≈ 10 minutes)
} Number of cores: 1
} Robust? Yes

VGG19 Robustness verification:
Counter-examples

39

Counterexample generation

Runtime (Online) Verification of Autonomous
Systems with Real-Time Reachability

40

} While improving confidence of such LECs before they are deployed
is important, online monitoring at runtime is essential

} How can we provide formal and provable guarantees of system-
level behaviors, such as safety, online at runtime?
} Key idea: abstract LEC behaviors (see other approaches on out

of distribution detection, etc.) and simply observe the influence
of their behavior on plant/system-level at runtime

} Necessary technology: online reachability analysis of plant
models, ideally with worst-case execution time (WCET)
guarantees for implementation in embedded hardware

} Builds on real-time reachability of linear/nonlinear ordinary
differential equations (ODEs) and hybrid automata with WCET
guarantees, implemented as an anytime algorithm [FORTE’19,
TECS’16, RTSS’14]

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/

http://www.verivital.com/rtreach/

Supervisory Control and Monitoring
LECs in the Loop

41

} Complex controller: can do anything, be output from LECs, etc., abstracted to just
produce control inputs (u) for the plant

} Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE])
plant model available, and controller input remains fixed over finite time horizon

} Supervisory control via Simplex architecture
} Check these control inputs on closed-loop for a finite time horizon using

reachability analysis with real-time (WCET) guarantees, if there’s a
problem, fall back to safety strategy

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex
Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’14]

https://github.com/verivital/rtreach

Real-time reachability
algorithm implementation is
cross-platform C (x86, ARM,
AVR, etc.) with no dynamic
memory allocation, recursion,
or library dependencies

u

https://github.com/verivital/rtreach

Safety Verification with Reachability

42

} Safe if intersection of overapproximation of reachable
states with unsafe states is empty (soundness)

Initial
States

Unsafe
States

Reachable
States

Overapproximation of
Reachable States

If safe, then red
trajectory reaching an
unsafe state cannot
exist

All trajectories
contained in
reachable states

F1/10 Ground Vehicle End-to-End (E2E)
LEC Demo

43

} End-to-end (E2E) controller: takes
images and produces steering
control inputs

} Classification-based control:
determining steering angle
(straight, weak left, weak right,
etc.) with fixed speed

} Reachable sets visualized below
right: if intersection with obstacles
occurs, use fallback safety
controller

} Plant model: nonlinear ODEs
(bicycle, Ackermann steering)

F1/10 Ground Vehicle Demo Comparison

E2E Control Without
Runtime Verification:
collisions

E2E Control With Runtime
Verification: no collisions

44

Complex controller: VGG-based neural network taking camera images as input and
producing steering angles at constant vehicle speed (1m/s)
Safety controller: slower vehicle speed (0.7m/s) gap following method

Runtime Performance Evaluation

45

} Evaluated 20 runs each with E2E and RL based controllers
monitored with real-time reachability, on NVIDIA Jetson
TX2 (ARM), running on Denver 2 cores

} Mean execution time overhead: ~7-20ms

[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18]
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19]
[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al, “NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems”, CAV’20]
[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20]
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20]

Feedforward Neural
Networks (FFNN)

Neural Network
Control Systems (NNCS)

Convolutional Neural
Networks (CNN)

Reachability
Solvers

Visualizer

Verifier
𝑴 ⊨ 𝑺?

The Neural Network Verification (NNV) Tool

No: bug

Yes: proof

𝑺 ≜ ¬

𝑴 ≜

Previous work:
Design-Time (Offline) Verification with NNV

46

Tool available standalone: https://github.com/verivital/nnv
Also integrated in Vanderbilt ALC toolchain

[Eykholt et al, CVPR 2018]

𝑺 ≜ ¬

https://github.com/verivital/nnv

ALC Toolchain

Continued

47

LEC Construction:
3. Evaluation: Testing/Verification

48

} Trained Neural Net can be tested in the
simulator with another experiment model

} Performance metrics are recorded for
LEC evaluation, e.g.:
} Distance from ideal path
} Pipe within camera field of view

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s

Toolchain Automation
Workflow Models

49

} Workflow models are for the specification and execution of job graphs
} Each workflow job specifies execution of one or more activity models
} Data dependencies between jobs are handled automatically

} Workflow supports
} Loops – For (parallel), while/ do-while (sequential)
} Transforms - Filter / Join (subset or aggregation of results)
} Branch – execution path based on user-specified condition

} Example workflow to train and optimize a LEC

Toolchain Automation
Support for Data Provenance

50

} All artifacts – generated during data
collection, training, evaluation

} Recorded for each execution:
} Parameter settings
} LEC(s) Models (Deployed/Initial)
} Data used in training, validation and

evaluation
} Allows re-execution of any step/workflow
} Track the evolution of data/ LECs/

Assurance
} Maintain traceability links at each stage

to:
} Data used in training LECs
} Initial trained model used in training

LECs
} LECs used in generating data

sets/Assurance

SimData

System Version

Trained
LEC
Weights

Parameters

V1 V22

Assurance
Monitor

Workflow

Data
Collection
Workflow

Trained
AM Data

System Assurance Case: GSN
• Top-level goals correspond

to high level safety claims

• Leaf goals correspond to
claims which can be directly
supported by
evidence/solutions

• Evaluation metrics from LEC
experiments can be used as
evidence for leaf goals

• User Defined Combination
Logic (E.g. M-of-N, etc.)

51 Example GSN Model for UUV

Cross-Referencing
Components, Datasets,
for Context/Evidence

Summary: ALC Toolchain
Design Automation for CPS with LEC-s

52

} Problem
How to support the engineering: i.e. design, analysis,
implementation, and assurance of CPS that include
Learning-Enabled Components (LEC)?

} Technical Approach
A model-based, tool-enhanced engineering process
assists in the construction, analysis, verification, and
assurance of LECs in the context of the engineered
system

} Results
Comprehensive model-based design automation
toolchain that directly supports training data
collection, training, verification, and assurance of
LEC-based CPS, in addition to conventional model-
based systems and software engineering activities
(architecture modeling and analysis, software
synthesis, simulation, and others). All activities are
configured and orchestrated via graphical models, all
engineering data (including training data) is archived
in a version-controlled project database, for
reproducibility.

Hartsell, Ch. Et al. "Model-based design for CPS with learning-enabled components." In Proceedings of the Workshop on Design Automation for
CPS and IoT, pp. 1-9. ACM, 2019.

