
Improved Geometric Path Enumeration
for Verifying ReLU Neural Networks

Stanley Bak1(B), Hoang-Dung Tran2,3,
Kerianne Hobbs4,5,

and Taylor T. Johnson3

1 Stony Brook University, Stony Brook, USA
stanleybak@gmail.com

2 University of Nebraska, Lincoln, USA
3 Vanderbilt University, Nashville, USA

4 Air Force Research Laboratory, Wright-Patterson Air Force Base, USA
5 Georgia Institute of Technology, Atlanta, USA

Abstract. Neural networks provide quick approximations to complex
functions, and have been increasingly used in perception as well as con-
trol tasks. For use in mission-critical and safety-critical applications, how-
ever, it is important to be able to analyze what a neural network can
and cannot do. For feed-forward neural networks with ReLU activation
functions, although exact analysis is NP-complete, recently-proposed ver-
ification methods can sometimes succeed.

The main practical problem with neural network verification is exces-
sive analysis runtime. Even on small networks, tools that are theoreti-
cally complete can sometimes run for days without producing a result.
In this paper, we work to address the runtime problem by improving
upon a recently-proposed geometric path enumeration method. Through
a series of optimizations, several of which are new algorithmic improve-
ments, we demonstrate significant speed improvement of exact analysis
on the well-studied ACAS Xu benchmarks, sometimes hundreds of times
faster than the original implementation. On more difficult benchmark
instances, our optimized approach is often the fastest, even outperform-
ing inexact methods that leverage overapproximation and refinement.

1 Introduction

Neural networks have surged in popularity due to their ability to learn complex
function approximations from data. This ability has led to their proposed appli-
cation in perception and control decision systems, which are sometimes safety-
critical. For use in safety-critical applications, it is important to prove properties
about neural networks rather than treating them as black-box components.

DISTRIBUTION A. Approved for public release; Distribution unlimited.
(Approval AFRL PA #88ABW-2020-0116, 15 JAN 2020).

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 66–96, 2020.
https://doi.org/10.1007/978-3-030-53288-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_4

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 67

A recent method [24] based on path enumeration and geometric set propa-
gation has shown that exact analysis can be practical for piecewise linear neu-
ral networks. This includes networks with fully-connected layers, convolutional
layers, average and max pooling layers, and neurons with ReLU activation func-
tions. Here, we focus on fully-connected layers with ReLU activation functions.
The verification problem in this method is presented in terms of input/output
properties of the neural network. The method works by taking the input set
of states and performing a set-based execution of the neural network. Due to
the linear nature of the set representation and the piecewise linear nature of
the ReLU activation function, the set may need to be split after each neuron is
executed, so that the output after the final layer is a collection of sets that can
each be checked for intersection with an unsafe set.

Since the formal verification problem we are addressing has been shown to
be NP-Complete [13], we instead focus on improving practical scalability. This
requires us to choose a set of benchmarks for evaluation. For this, we focus on
properties from the well-studied ACAS Xu system [13]. This contains a mix of
safe and unsafe instances, where the original verification times measured from
seconds to days, including some unsolved instances.

The main contributions of this paper are:

• several new speed improvements to the path enumeration method, along with
correctness justifications, that are each systematically evaluated;

• the first verification method that verifies all 180 benchmark instances from
ACAS Xu properties 1–4, each in under 10 min on a standard laptop;

• a comparison with other recent tools, including Marabou, Neurify, NNV, and
ERAN, where our method is often the fastest and over 100x faster than the
original path enumeration method implementation in NNV.

This paper first reviews background related to neural networks, the path
enumeration verification approach, and the ACAS Xu benchmarks in Sect. 2.
Next, Sect. 3 analyzes several algorithmic optimizations to the basic procedure,
and systematically evaluates each optimization’s effect on the execution times of
the ACAS Xu benchmarks. A comparison with other tools is provided in Sect. 4,
followed by review of related work in Sect. 5 and a conclusion.

2 Background

We now review the neural network verification problem (Sect. 2.1), the basic geo-
metric path enumeration algorithm (Sect. 2.2), important spatial data structures
(Sect. 2.3), and the ACAS Xu benchmarks (Sect. 2.4).

2.1 Neural Networks and Verification

In this work, we focus our attention on fully-connected, feedforward neural net-
works with ReLU activation functions. A neural network computes a function
NN : R

ni → R
no , where ni is the number of inputs and no is the number of

68 S. Bak et al.

outputs. A neural network consists of k layers, where each layer i is defined with
a weight matrix Wi and a bias vector bi. Given an input point y0 ∈ R

ni , a neural
network will compute an output point yk ∈ R

no as follows:

x(1) = W1y0 + b1, y1 = f(x(1))

x(2) = W2y1 + b2, y2 = f(x(2))
...

x(k) = Wkyk−1 + bk, yk = f(x(k))

We call yi−1 and yi the input and output of the i-th layer, respectively, and
x(i) the intermediate values at layer i. The vector-function f is defined using
a so-called activation function, that is applied element-wise to the vector of
intermediate values at each layer. We focus on the popular rectified linear unit
(ReLU) activation function, ReLU(x) = max(x, 0).

For this computation definition to make sense, the sizes of the weights matri-
ces and bias vectors are restricted. The first layer must accept ni-dimensional
inputs, the final layer must produce no-dimensional outputs, and the interme-
diate layers must have weights and biases that have sizes compatible with their
immediate neighbors, in the sense of matrix/vector multiplication and addition.
The number of neurons (sometimes called hidden units) at layer i is defined as
the number of elements in the layer’s output vector yi.

Definition 1 (Output Range). Given a neural network that computes the
function NN and an input set I ⊆ R

ni , the output range is the set of pos-
sible outputs of the network, when executed from a point inside the input set,
Range(NN, I) = {yk | yk = NN(y0), y0 ∈ I}.
Computing the output range is one way to solve the verification problem.

Definition 2 (Verification Problem for Neural Networks). Given a neu-
ral network that computes the function NN, an input set I ⊆ R

ni , and an unsafe
set U ⊆ R

no , the verification problem for neural networks is to check if
Range(NN, I) ∩ U = ∅.

If verification is impossible, we would also prefer to generate a counterexam-
ple y0 ∈ I where yk = NN(y0) and yk ∈ U , although not all tools do this. We also
further assume in this work that the input and unsafe sets are defined with linear
constraints, I = {x | Aix ≤ bi, x ∈ R

ni}, and U = {x | Aux ≤ bu, x ∈ R
no}.

2.2 Basic Geometric Path Enumeration Algorithm

Given enough time, the output range of a neural network can be computed
exactly using a recently-proposed geometric path enumeration approach [24].

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 69

input : Input Set: I, Unsafe Set: U
output: Verification Result (safe or unsafe)

1 s ← 〈layer:0, neuron:None, θ : convert(I)〉 // computation-state tuple

2 W ← List() // initialize waiting list

3 W.put(s)
4 result ← safe
5 while result = safe and ¬W.empty() do
6 s ← W.pop()
7 result ← step(s, W, U) // updates W, given in Algorithm 2

8 end
9 return result

Algorithm 1: High-level neural-network path enumeration algorithm.

The general strategy is to execute the neural network with sets instead of points.
A spatial data structure is used to represent the input set of states, and this set
is propagated through each layer of the neural network, computing the set of
possible intermediate values and then the set of possible outputs repeatedly until
the output of the final layer is computed. In this context, a spatial data structure
represents some subset of states in a Euclidean space R

n, where the number of
dimensions n is the number of neurons in one of the layers of the network, and
may change as the set is propagated layer by layer. An example spatial data
structure could be a polytope defined using a finite set of half-spaces (linear
constraints), although as explained later this is not the most efficient choice.
Section 2.3 will discuss spatial data structures in more detail.

The high-level verification method is shown in Algorithm1, where functions
in red are custom to the spatial data structure being used. The convert function
(line 1) converts the input set I from linear constraints to the desired spatial data
structure, and stores it in the θ element of s, where s is called a computation-
state tuple. A neuron value of None in the tuple indicates that next operation
should be an affine transformation. The computation-state tuple is then put into
a waiting list (line 3), which stores tuples that need further processing. The step
function (line 7) propagates the set θ by a single neuron in a single layer of the
network, and is elaborated on in the next paragraph. This function can modify
W, possibly inserting one or more computation-state tuples, although always
at a point further along in the network (with a larger layer number or neuron
index), which ensures eventual termination of the loop. This function will also
check if the set, after being fully propagated through the network, intersects the
unsafe set. In this case, step will return unsafe, which causes the while loop to
immediately terminate since the result is known.

The step function propagates the set of states θ by one neuron, and is shown
in Algorithm 2. The intermediate values are computed from the input set of each
layer by calling affine transformation (line 12). For the current neuron index
n, the algorithm will check if the input to the ReLU activation function, dimen-
sion n of the set θ, is always positive (or zero), always negative, or can be either
positive or negative. This is done by the get sign function (line 21), which

70 S. Bak et al.

input : Computation-State Tuple: s, Waiting List: W, Unsafe Set: U
output: Safe so far? (safe or unsafe)

1 if s.neuron = None then
2 // finished with the previous layer

3 if s.layer = k then
4 // finished with all layers

5 if s.θ.has intersection(U) = ∅ then
6 return safe
7 else
8 return unsafe // alternatively, return counterexample here

9 end

10 else
11 s.layer ← s.layer + 1
12 s.θ.affine transformation(Ws.layer, bs.layer)
13 s.neuron ← 1

14 end

15 end
16 n ← s.neuron
17 s.neuron ← n + 1
18 if s.neuron > size(bs.layer) then
19 s.neuron ← None // n is the last neuron in the current layer

20 end
21 switch get sign(s, n) do
22 case pos do
23 // do nothing

24 case neg do
25 s.θ.project to zero(n)
26 case posneg do
27 t ← 〈s.layer, s.neuron, s.θ〉 // deep copy s
28 s.θ.add constraint(n, ≥, 0) // split on positive case

29 t.θ.add constraint(n, ≤, 0) // split on negative case

30 t.θ.project to zero(n)
31 W.put(t)

32 end
33 W.put(s)
34 return safe // safe so far

Algorithm 2: Pseudocode for step function, which propagates a set
through the network by one neuron.

returns pos, neg, or posneg, respectively. In the first two cases, the current dimen-
sion n of the set is left alone or assigned to zero (using the project to zero
method), to reflect the semantics of the ReLU activation function when the input
is positive or negative, respectively. In the third case, the set is split into two
sets along linear constraint where the input to the activation function equals
zero. In the case where the input to the activation function is less than zero, the
value of dimension n is projected to zero, reflecting the semantics of the ReLU

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 71

activation function. The splitting is done using the add constraint method of
the spatial data structure, which takes three arguments: n, sign, and val. This
method intersects the set with the linear condition that the n-th dimension is,
depending on sign, greater than, less than, and/or equal to val. Once the set
has been propagated through the whole network, it is checked for intersection
with the unsafe set (line 5), using the has intersection method.

This enumeration algorithm has been shown to be sound and complete [24].
However, for this strategy to work in practice, the spatial data structure used
to store θ must support certain operations efficiently. These are denoted in red
in Algorithms 1 and 2: convert, has intersection, affine transformation,
get sign, project to zero, and add constraint. Polytopes represented with
half-spaces, for example, do not have a known efficient way to compute general
affine transformations in high dimensions. Instead, linear star sets [4] will be
used, which are a spatial data structure that support all the required operations
efficiently and without overapproximation error. These will be elaborated on
more in the next subsection.

In this work, we focus on optimizations to the presented algorithm that
increase its practical scalability, while exploring the same set of paths. The most
important factor that we do not control and influences whether this can succeed
is the number of paths that exist. Each output set that gets checked for inter-
section with the unsafe set corresponds to a unique path through the network,
where the path is defined by the sign of each element of the intermediate values
vector at each layer. The algorithm enumerates every path of the network for a
given input set. An upper bound on this is 2N , where N is the total number of
neurons in all the layers of the network. For many practical verification problem
instances, however, the actual number of unique paths is significantly smaller
than the upper bound.

2.3 Spatial Data Structures

Using the correct spatial data structure (set representation in this context) is
important to the efficiency of Algorithm 1 and 2, as well as some of our opti-
mizations. Here we review two important spatial data structures, zonotopes and
(linear) star sets.

Zonotopes. A zonotope is an affine transformation of the [−1, 1]p box. Zono-
topes have been used for efficient analysis of hybrid systems [8] as well as more
recently to verify neural networks using overapproximations [7,21]. Zonotopes
can be described mathematically as Z = (c,G), where the center c is an n-
dimensional vector and generator matrix G is an n × p matrix. The columns of
G are sometimes referred to as generators of the zonotope, and we write these
as g1, . . . , gp. A zonotope Z encodes a set of states as:

Z =
{
x ∈ R

n
∣
∣ x = c + Gα, α ∈ [−1, 1]p

}
(1)

The two most important properties of zonotopes for the purposes of verifica-
tion are that they are efficient for (i) affine transformation, and (ii) optimization.

72 S. Bak et al.

An affine transformation of an n-dimensional point x to a q-dimensional
space is defined with a q × n matrix A and q-dimensional vector b so that the
transformed point is x′ = Ax+b. An affine transformation of every point in an n-
dimensional set of points described by a zonotope Z = (c,G) is easily computed
as Z ′ = (Ac + b, AG). Note this uses standard matrix operations which scale
polynomially with the dimension of A, and are especially efficient if the number
of generators is small. In the verification problem, the number of generators, p,
corresponds to the degrees of freedom needed to encode the input set of states.
In ACAS Xu system, for example, there are 5 inputs, and so the input set can
be encoded with 5 generators. In contrast, affine transformations of polytopes
require converting between a half-space and vertex representation, which is slow.

The second efficient operation for zonotopes is optimization in some direction
vector v. Given a zonotope Z = (c,G) and a direction v to maximize, the point
x∗ ∈ Z that maximizes the dot product v · x∗ can be obtained as a simple
summation x∗ = c +

∑p
i=1 x∗

i , where each x∗
i is given as:

x∗
i =

{
vi, if vi · gi ≥ −vi · gi

−vi, otherwise
(2)

Star Sets. A (linear) star set is another spatial data structure that generalizes
a zonotope. A star set is an affine transformation of an arbitrary p-dimensional
polytope. Mathematically, a star set S is a 3-tuple, (c,G, P), where c and G are
the same as with a zonotope, and P is a half-space polytope in p dimensions. A
star set S encodes a set of states (compare with Eq. 1):

S = {x ∈ R
n | x = c + Gα, α ∈ P} (3)

A star set can encode any zonotope by letting P be the [−1, 1]p box. Star
sets can also encode more general sets than zonotopes by using a more complex
polytope P . A triangle, for example, can be encoded as a star set by setting P
to be a triangle, using the origin as c and the identity matrix as V . This cannot
be encoded with zonotopes, as they must be centrally symmetric. In Algorithm1
on line 1, the convert function produces the input star set (c,G, P) from input
polytope I setting c to the zero vector, G to the identity matrix, and P to I.

Affine transformations by a q × n matrix A and q-dimensional vector b of a
star set S can be computed efficiently similar to a zonotope: S′ = (Ac+b, AG,P).

Optimization in some direction v is slightly less efficient than with a zonotope,
and can be done using linear programming (LP). To find a point x∗ ∈ S that
maximizes the dot product v ·x∗, we convert the optimization direction v to the
initial space w = (vG)T , find a point α∗ ∈ P that maximizes w using LP, and
then convert α∗ back to the n-dimensional space x∗ = c + Gα∗.

Star sets, unlike zonotopes, also efficiently support half-space intersection
operations by adding constraints to the star set’s polytope. Given a star set
S = (c,G, P) and an n-dimensional half-space dx ≤ e defined by vector d and
scalar e, we convert this to a p-dimensional half-space as follows:

(dG)α ≤ e − dc (4)

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 73

The star set after intersection is then S′ = (c,G, P ′), where the half-space poly-
tope P ′ is the same as P , with one additional constraint given by Eq. 4.

2.4 ACAS Xu Benchmarks

Since the verification problem for neural networks is NP-Complete, we know
exact analysis methods cannot work well in all instances. In order to evaluate
improvements, therefore, we must focus on a set of benchmarks.

In this work, we choose to focus on the Airborne Collision System X
Unmanned (ACAS Xu) set of neural network verification benchmarks [13]. As
these benchmarks have been widely-used for evaluation in other publications,
and some authors have even made their tools available publicly, using these
allows us to provide a common comparison point with other methods later in
Sect. 4.

ACAS Xu is a flight-tested aircraft system designed to avoid midair collisions
of unmanned aircraft by issuing horizontal maneuver advisories [17]. The system
was designed using a partially observable Markov decision process that resulted
in a 2 GB lookup table which mapped states to commands. This mapping was
compressed to 3 MB using 45 neural networks (two of the inputs were discretized
and are used to choose the applicable network) [12]. Since the compression is
not exact, the verification step checks if the system still functions correctly.

Each network contains five inputs that get set to the current the aircraft
state, and five outputs that determine the current advisory. The network has six
ReLU layers with 50 neurons each, for a total of 300 neurons. Ten properties were
originally defined, encoding things like, if the aircraft are approaching each other
head-on, a turn command will be advised (property 3). The formal definition of
all the properties encoded as linear constraints is available in the appendix of
the original work [13].

3 Improvements

We now systematically explore several improvements to the exact path enumer-
ation verification method from Sect. 2.2. For each proposed improvement, we
compare the run-time on the ACAS Xu system with and without the change.
We focus on properties 1–4. Although originally these were measured on a subset
of the 45 networks [13], the same authors later used all the networks to check
these properties [14], which is what we will do here. Each verification instance
is run with a 10 min timeout, so that the maximum time needed to test a single
method, if a timeout is encountered on each of the 180 benchmarks, is 30 h.
Later, in Sect. 4, we will compare the most optimized method with other ver-
ification tools and the other ACAS Xu properties. Unless indicated otherwise,
our experiments were performed on a Laptop platform with Ubuntu Linux 18.04,
32 GB RAM and an Intel Xeon E-2176M CPU running at 2.7 GHz with 6 phys-
ical cores (12 virtual cores with hyperthreading). The full data measurements
summarized in this section are provided in AppendixC.

74 S. Bak et al.

Fig. 1. Depth-first search outperforms breadth-first search.

3.1 Local Search Type (DFS vs BFS)

Algorithm 1 uses a waiting list to store the computation-state tuples, which are
popped off one at a time and passed to the step function. This need not strictly
be a list, but is rather a collection of computation-state tuples, and we can
consider changing the order states are popped to explore the state space with
different strategies. If the possible paths through the neural network are viewed
as a tree, two well-known strategies for tree traversal that can be considered are
depth-first search (DFS) and breadth-first search (BFS). A DFS search can be
performed popping the computation-state tuple with the largest (layer, neuron)
pair, whereas a BFS search is done by popping the tuple with the smallest
(layer, neuron) pair.

The original path enumeration with star set approach [24] describes a layer-
by-layer exploration strategy, which is closer to a BFS search. Finite-state
machine model-checking methods, however, more often use DFS search.

We compare the two approaches in Fig. 1, which summarizes the execution
of all 180 benchmarks. Here, the y-axis is a timeout in seconds, and the x-axis
is the number of benchmarks verified within that time. Within the ten minute
timeout, around 90 benchmarks can be successfully verified with BFS, and 120
with DFS1. Notice that the y-axis is log scale, so that differences in runtimes
between easy and hard benchmark instances are both visible.

As can be seen in the figure, the DFS strategy is superior. This is primarily
due to unsafe instances of the benchmarks, where DFS can often quickly find an
unsafe execution and exit the high-level loop, whereas BFS first iterates through

1 The DFS method solves every benchmark that can be solved with BFS. Appendix C
contains the complete results.

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 75

all the layers and neurons (DFS explores deep paths, which sometimes are quickly
found to be unsafe). In the cases where the system was safe, both approaches
took similar time. Another known advantage of DFS search is that the memory
needed to store the waiting list is significantly smaller, which can be a factor for
the benchmarks with a large number of paths.

Correctness Justification: Both DFS and BFS explore the same sets of states,
just in a different order.

3.2 Bounds for Splitting

Using DFS search, we consider other improvements. The original path enumer-
ation publication mentions the following optimization:

“. . . to minimize the number of [operations] and computation time, we
first determine the ranges of all states in the input set which can be done
efficiently by solving . . . linear programming problems.” [24]

An evaluation of the improvement is not provided, so we investigate this here.
The optimization is referring to the implementation of the get sign function on
line 21 of Algorithm2. The get sign(s, n) function takes as input a computation-
state tuple s with spatial data structure θ (a star set) and a dimension number
n. It returns pos, neg, or posneg, depending on whether value of dimension n,
which we call xn, in set θ can be positive (or zero), negative or both. Our
baseline implementation, which we refer to as Copy, determines the output of
get sign by creating two copies of the passed-in star set, intersecting them
with the condition that xn ≤ 0 or xn ≥ 0, and then checking each star set for
feasibility, done using linear programming (LP). In the second version, which we
call Bounds, the passed-in star set is instead minimized and maximized in the
direction of xn, to determine the possible signs. While Copy incurs overhead from
creating copies and adding intersections, Bounds does extra work by computing
the minimum and maximum which are not really needed (we only need the
possible signs of xn).

A comparison of the optimizations on the ACAS Xu benchmarks are shown
in Fig. 2 by comparing Copy to Bounds, we confirm the original paper’s claim
that Bounds is faster.

Correctness Justification: If θ intersected with xn ≤ 0 is feasible, then the
minimum value of xn in θ will be less than or equal to zero and vice versa.
Similar for the maximum case.

3.3 Fewer LPs with Concrete Simulations

We next consider strategies to determine the possible signs of a neuron’s output
with fewer LP calls, which we call prefiltering. Consider a modification of the
Bounds optimization, where rather than computing both the upper and lower
bound of xn, we first compute the lower bound and check if its value is positive.

76 S. Bak et al.

If this is the case, we know get sign should return pos, and we do not need
to compute the upper bound. We could, alternatively, first compute the upper
bound and check if its value is negative. If there is no branching and we guess
the correct side to check, only a single LP needs to be solved instead of two.

Fig. 2. Prefilter optimizations improve performance by rejecting branches without LP
solving. The Zono-Sim method works best.

We can do even better than guessing by tracking extra information in the
computation-state tuple. We add a simulation field to s, which contains a
concrete value in the set of states θ. This is initialized to any point in the input
set I, which can be obtained using LP, or using the center point if the input
states are a box. When get sign returns posneg and the set is split (line 27 in
Algorithm 2), the optimization point x∗ that proved a split was possible is used
as the value of simulation in the new set. Also, when an affine transformation
of the set is computed (line 12 in Algorithm2), or when the set is projected to
zero, simulation must also be modified by the same transformation.

With a concrete value of xn available in simulation, we use its sign to
decide whether to first check the upper or lower bound of dimension n in θ. If
the nth element of simulation is positive, for example, we first compute the
lower bound. If this is positive (or zero), then get sign can return pos. If the
lower bound is negative, then we can immediately return posneg without solving
another LP, since the simulation serves as a witness that xn can also be positive.
Only when the simulation value of xn is zero do we need to solve two LPs.

We call this method Sim in Fig. 2. This is shown to be generally faster than
the previous methods, as the overhead to track simulations is small compared
with the gains of solving fewer LPs.

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 77

Correctness Justification: If the lower bound of xn is greater than zero, than
its upper bound will be also be greater than zero and pos is the correct output. If
the lower bound is less than zero and the nth element of simulation is greater
than zero, than the upper bound will also be positive, since it must be greater
than or equal to the value in the simulation (simulation is always a point in
the set θ), and so posneg is correct. Similar for the opposite case.

3.4 Zonotope Prefilter

We can further reduce LP solving by using a zonotope. In each computation-
state tuple s, we add a zonotope field z that overapproximates θ, so that θ ⊆ z.
In the ACAS Xu benchmarks (and most current benchmarks for verification of
NNs), the input set of states is provided as interval values on each input, which is
a box and can be used to initialize the zonotope. Otherwise, LPs can be solved
to compute box bounds on the input set to serve as an initial value. During
the affine transformation of θ (line 12 in Algorithm 2), the zonotope also gets
the same transformation applied. Cases where θ gets projected to zero are also
affine transformations and can be exactly computed with the zonotope z. The
only unsupported operation in the algorithm for zonotopes is add constraint,
used during the splitting operation (lines 28–29 in Algorithm2). We skip these
operations for the zonotope, which is why z is an overapproximation of θ.

With a zonotope overapproximation z available during get sign, we can
sometimes reduce the number of LPs to zero. Computing the minimum and
maximum of the n-th dimension of z is an optimization problem over zonotopes,
which recall from Sect. 2.3 can be done efficiently as a simple summation. If the
n-th dimension of z is completely positive or negative, we can return pos or neg
immediately. Otherwise, if both positive and negative values are possible in the
zonotope, we fall back to LP solving on θ to compute the possible signs. This can
be done either by computing both bounds, which we call Zono-Bounds or with the
simulation optimization from before, which we call Zono-Sim. The performance
of the methods are shown in Fig. 2. The Zonotope-Sim method performs the
fastest, verifying about 145 benchmarks in under 10 min and demonstrating that
reduction in LP solving is worth the extra bookkeeping.

Correctness Justification: Rejecting branches without LP solving is justified
by the fact that z is an overapproximation of θ. This is initially true, as if the
input set is a box then z = θ and otherwise z is the box overapproximation
of θ. This is also true for every operation other than add constraint, as these
are exact for zonotopes. Finally, it is also true when add constraint operation
is skipped on z, as adding constraints can only reduce the size of the set θ. If
θ ⊆ z, every smaller set θ′ will also be a subset of z by transitivity, θ′ ⊆ θ ⊆ z,
and so an overapproximation is maintained by ignoring these operations with z.
Finally, if the n-th dimension of an overapproximation of θ is strictly positive
(or negative), the n-th dimension of θ will also be strictly positive (or negative).

78 S. Bak et al.

Fig. 3. Computing neuron output
bounds eagerly improves speed.

Fig. 4. Zonotope domain contraction
improves overall performance.

3.5 Eager Bounds Computation

The step function shown in Algorithm2 computes the sign of xn for the current
neuron n. An alternative approach is to compute the possible signs for every
neuron’s output in the current layer immediately after the affine transformation
on line 12. These bounds can be saved in the computation-state tuple s and then
accessed by get sign. The potential advantage is that, if a split is determined
as impossible for some neuron n, and a split occurs at some earlier neuron i < n,
then the split will also be impossible for neuron n in both of the sets resulting
from the earlier split at neuron i. In this way, computing the bounds once for
neuron n is sufficient in the parent set, as opposed to computing the bounds
twice, in each of the two children sets resulting from the split. The benefit can be
even more drastic if there are multiple splits before neuron n is processed, where
potentially an exponential number of bounds computations can be skipped due
to a single computation in the parent. On the other hand, if a split is possible, we
will have computed more bounds than we needed, as we will do the computation
once in the parent and then once again in each of the children. Furthermore, this
method incurs additional storage overhead for the bounds, as well as copy-time
overhead when computation-state tuples are deep copied on line 27. Experiments
are important to check if the benefits outweigh the costs.

The modified algorithm, which we call Eager, will use the zonotope prefilter
and simulation as before to compute the bounds, but this will be done immedi-
ately after the affine transformation on line 12. Further, when a split occurs along
neuron n in the posneg case, the bounds also get recomputed in the two children
for the remaining neurons in the layer, starting at the next neuron n+1. Neurons
where a split was already rejected do not have their bounds recomputed. This
algorithm is compared with the previous approach, called Noneager. In Fig. 3,
we see eager computation of bounds slightly improves performance.

Correctness Justification: When sets are split in the posneg case in Algo-
rithm2, each child’s θ is a subset of the parent’s θ. Thus, the upper and lower

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 79

bound of the output of each neuron n can only move inward. Thus, if the par-
ent’s bounds for some neuron are strictly positive (or negative), then the two
childrens’ bounds will match the parent’s and do not need to be recomputed.

3.6 Zonotope Contraction

The accuracy of the zonotope prefilters is important, as large overapproximation
error will lead to the computed overapproximation range of xn in zonotope z
always overlapping zero, and thus performance similar to the Sim method. This
effect is observed near the top of the curves in Fig. 2.

In order to improve accuracy, we propose a zonotope domain contraction
approach, where the size of the zonotope set z is reduced while still maintaining
an overapproximation of the exact star set θ. As discussed before, computing
exact intersections of zonotopes is generally impossible when splitting (lines 28–
29 in Algorithm 2). However, we can lower our expectations and instead consider
other ways to reduce the size of zonotope z while maintaining θ ⊆ z.

To do this, we use a slightly different definition of a zonotope, which we refer
to as an offset zonotope. Instead of an affine transformation of the [−1, 1]p box,
an offset zonotope is an affine transformation of an arbitrary box, [l1, u1]× . . .×
[lp, up], where each upper bound ui is greater than or equal to the lower bound
li. As this corresponds to an affine transformation of the [−1, 1]p box, offset
zonotopes are equally expressive as ordinary zonotopes. Optimization over offset
zonotopes can also be done using a simple summation, but instead of using Eq. 2,
we use the following modified equation:

x∗
i =

{
uivi, if uivi · gi ≥ livi · gi

livi, otherwise
(5)

Using offset zonotopes allows for some memory savings in the algorithm. The
initial zonotope can be created using a zero vector as the zonotope center and
the identity matrix as the generator matrix, the same as the initial input star
set. In fact, with this approach, since the affine transformations being applied to
the zonotope z and star set θ are identical, the centers and generator matrices
will always remain the same, so that we only need to store one copy of these.

Beyond memory savings, with offset zonotopes we can consider ways to
reduce the zonotope’s overapproximation error when adding constraints to θ.
The proposed computations are done after splitting (lines 28–29 in Algorithm2),
each time an extra constraint gets added to the star set’s polytope P . The new
linear constraint in the output space (xn ≤ 0 or xn ≥ 0) is transformed to a
linear constraint in the initial space using Eq. 4. We then try to contract the size
of the zonotope’s box domain by increasing each li and reducing each ui, while
still maintaining an overapproximation of the intersection. We consider two ways
to do this which we call Contract-LP and Contract-Simple.

In Contract-LP, linear programming is used to adjust each li and ui. Since the
affine transformations for the star set θ and the zonotope z are the same, z is an
overapproximation if and only if the star set’s polytope P is a subset of z’s initial

80 S. Bak et al.

Fig. 5. Both Contract-Simple and Contract-LP can find point q to contract a zonotope’s
initial box (left), but only Contract-LP can find point r (right), as it requires reasoning
with multiple linear constraints.

domain box [l1, u1] × . . . × [lp, up]. Thus, we can compute tight box bounds on
P using linear programming, and using this box as the offset zonotope’s initial
domain box. This will be the smallest box that is possible for the current affine
transformation while still maintaining an overapproximation. This approach,
however, requires solving 2p linear programs, which may be expensive.

Another approach is possible without invoking LP, which we call Contract-
Simple. Contract-Simple overapproximates the intersection by considering only
the new linear constraint. This is a problem of finding the smallest box that
contains the intersection of an initial box and a single halfspace, which can be
solved geometrically without LP solving (see AppendixA for an algorithm).

Since Contract-Simple only considers a single constraint, it can be less accu-
rate than Contract-LP. An illustration of the two methods is given in Fig. 5,
where the initial domain is a two-dimensional box. The thin lines are the linear
constraints that were added to θ, where all points below these lines are in the
corresponding halfspaces. On the left, both Contract-Simple and Contract-LP can
reduce the upper bound in the y direction by finding the point q, which lies at
the intersection of one side of the original box domain and the new linear con-
straint. On the right, two constraints were added to the star θ (after two split
operations), and they both must be considered at the same time to find point
r to be able to reduce the upper bound in the y direction. In this case, only
Contract-LP will succeed, as Contract-Simple works with only a single linear con-
straint at a time, and intersecting the original box with each of the constraints
individually does not change its size.

Comparing the performance of the methods in Fig. 4, we see that the less-
accurate but faster Contract-Simple works best for the ACAS Xu benchmarks.
We expect both methods to take longer when the input set has more dimensions,
but especially Contract-LP since it requires solving two LPs for every dimension.

Correctness Justification: The domain contraction procedures reduces the
size of zonotope z while maintaining an overapproximation of the star set θ.
This can be seen since the affine transformations in z and θ are always the same,
and every point in the star set’s initial input polytope P is also a point in the
initial box domain of z. Since an overapproximation of θ is maintained, it is still
sound to use z when determining the possible signs of a neuron’s output.

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 81

Fig. 6. Our method verifies all the
benchmarks, although Neurify is usu-
ally faster when it completes.

Fig. 7. Without property 1, our app-
roach is generally fastest when the run-
time exceeds two seconds.

4 Evaluation with Other Tools

We next compare the optimized implementation with other neural network ver-
ification tools. Our optimizations are part of the exact analysis mode of the
nnenum tool available at https://github.com/stanleybak/nnenum. The artifact
evaluation package for our measurements here is online at http://stanleybak.
com/papers/bak2020cav repeatability.zip.

We evaluate with the fully optimized method, using DFS local search, Zono-
Sim prefilter, Eager bounds, Contract-Simple zonotope domain contraction. Fur-
ther, we use a parallelized version of the algorithm, where the details of the
parallalization are provided in AppendixB. With a 12-thread implementation
(one for each core on our evaluation system), the algorithm can now verify all
180 ACAS Xu benchmarks from properties 1–4 within the 10 min timeout. All
measurements are done on our Laptop system, with hardware as described in the
first paragraph of Sect. 3. The complete measurement data summarized here is
available in AppendixD.

ACAS Xu Properties 1–4. We compare our method with Marabou [14] Neu-
rify [26], and NNV [25]. Marabou is the newer, faster version of the Reluplex
algorithm [13], where a Simplex-based LP solver is modified with special ReLU
pivots2. Neurify is the newer, 20x faster version of the ReluVal algorithm [27],
which does interval-based overapproximation, and splits intervals based on gradi-
ent information, ensuring the overapproximation error cannot cause to an incor-
rect result. NNV is the original Matlab implementation of the path enumeration
method with star sets, available online at https://github.com/verivital/nnv. The
verification result is consistent between the methods, which is a good sanity check
for implementation correctness.
2 For Marabou, we used the faster parallel divide-and-conquer mode with arguments

as suggested in the paper [14]: --dnc --initial-divides=4 --initial-timeout=5

--num-online-divides=4 --timeout-factor=1.5 --num-workers=12.

https://github.com/stanleybak/nnenum
http://stanleybak.com/papers/bak2020cav_repeatability.zip
http://stanleybak.com/papers/bak2020cav_repeatability.zip
https://github.com/verivital/nnv

82 S. Bak et al.

Table 1. Tool runtime (secs) for ACAS Xu properties 5–10.

Property Net Result Our method ERAN Neurify NNV exact Marabou

5 1-1 SAFE 13 – 12 671 1969

6.1 1-1 SAFE 67 – 3 6230 12425

6.2 1-1 SAFE 76 – 1 7612 17755

7 1-9 UNSAFE 5948 – 804 – –

8 2-9 UNSAFE .7 – 64 – –

9 3-3 SAFE 88 318 393 12576 15235

10 4-5 SAFE 12 – 1 457 2795

The comparison on ACAS Xu benchmarks on properties 1–4 is shown in
Fig. 6. Our method is the only approach able to analyze all 180 benchmarks in
less than 10 min, and outperforms both Marabou and NNV.

The comparison with Neurify is more complicated. In Fig. 6, Neurify was
faster (when it finished) on all but the largest instances. One advantage of Neu-
rify compared with the other tools is that if the unsafe set is very far away
from the possible outputs of a neural network, it can prove safety quickly with a
very coarse overapproximation. Path enumeration methods, on the other hand,
explore all paths regardless of the distance to the unsafe set. This is especially
relevant for ACAS Xu property 1, where the system is unsafe if the first output,
clear-of-conflict, is greater than 1500 whereas, for example on network 1-1, this
output is always smaller than 1. The meaning of this property is also strange:
the absolute value of a specific output is irrelevant, as relative values are used
to select the current advisory. Neurify is admittedly the clear winner for all the
networks with this property.

When this property is excluded and instead only the more difficult prop-
erties 2–4 are considered (Fig. 7), a different trend emerges. Here, our method
outperforms Neurify when analysis takes more than about two seconds, which
we believe is an encouraging result. Further, part of the reason why Neurify can
be very quick on the easier benchmarks (with runtime less than two seconds) is
that our implementation incurs a startup delay of about 0.6 s simply to start the
Python process and begin executing our script, by which time the C++-based
Neurify can verify 80 benchmarks. We believe the more interesting cases are
when the runtimes are large, and we outperform Neurify in these cases.

Finally, we compare with using single-set overapproximations for analysis.
NNV provides an approximate-star method, where rather splitting, a single star
set is used to overapproximate the result of ReLU operations. While fast when it
succeeds, this strategy can only verify 68 of the 180 benchmarks. Furthermore,
the benchmarks it verified were also quickly checked with exact path enumer-
ation. Of the 68 verified benchmarks, the largest performance difference was
property 3 with network 3-3, which took 3.1 s with exact enumeration and 1.2 s

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 83

with single-set overapproximation. For these ACAS Xu benchmarks, overapprox-
imation using a single set does not provide much benefit.

Other ACAS Xu Properties. Another recently proposed and well received
analysis method is presented in the elegant framework of abstract interpretation
using zonotopes, in tools such as AI2 [7] or DeepZ [21]. These methods are single-
set overapproximation methods, similar to the approximate-star method in NNV,
but with strictly more error (see Fig. 2 in the NNV paper [24] and the associated
discussion). As these methods have more error than approximate-star, and since
approximate-star could only verify 68 of the 180 benchmarks, we do not expect
these methods to work well on the ACAS Xu system.

However, a recent extension to these methods has been proposed where the
overapproximation is augmented with MILP solving [22] to provide complete
analysis. This has been implemented in the ERAN tool, publicly available at
https://github.com/eth-sri/eran. According to current version of the README,
ERAN currently only supports property 9 of ACAS Xu, so we were unable to try
this method on the other ACAS Xu networks or properties. Verifying property
9 uses a hard-coded custom strategy of first partitioning the input space into
6300 regions and analyzing these individually. This problem-specific parameter
presents a problem for fair timing comparison, as the time needed to find the
splitting parameter value of 6300 is unknown and does not get measured.

Ignoring this issue, we ran a comparison on property 9 and network 3-3, the
only network where the property applies. A runtime comparison for ERAN3 and
the other tools is shown in Table 1. Surprisingly, our enumeration method signif-
icantly outperforms the overapproximation and refinement approaches both in
Neurify and ERAN on this benchmark. Notice, however, that the original enu-
meration method in NNV is much slower than our method (about 150x slower
in this case). Without the optimizations from this work, one would reach the
opposite conclusion about which type of method works better for this bench-
mark. Both NNV and our method, however, report exploring the same number
of paths, 338600 on this system.

For completeness, Table 1 also includes the other original ACAS Xu prop-
erties, which were each defined over a single network4. Both our method and
Neurify completed all the benchmarks, although neither was best in all cases.
Property 7 is particularly interesting, since the input set is the entire input space,
so the number of path is very large. Hundreds of millions of paths were explored
before finding a case where the property was violated.

5 Related Work

As the interest in neural networks has surged, so has research in their verification.
We review some notable results here, although recent surveys may provide more

3 For ACAS Xu analysis, we used the following arguments provided by the ERAN
authors: --domain deepzono --dataset acasxu --complete True.

4 Property 6’s input set was a disjunction of two boxes which we split into two cases.

https://github.com/eth-sri/eran

84 S. Bak et al.

a thorough overview [15,28]. Verification approaches for NNs can broadly be
characterized into geometric techniques, SMT methods, and MILP approaches.

Geometric approaches, like this work, propagate sets of states layer by layer.
This can be done with polytopes [6,29] using libraries like the multi-parametric
toolbox (MPT) [10], although certain operations do not scale well, in particu-
lar, affine transformation. Other approaches use geometric methods to bound
the range of a neural network. These include AI2 [7] and DeepZ [21] which
propagate zonotopes through networks and are presented in the framework of
abstract interpretation. ReluVal [27] and Neurify [26] also fall into this cate-
gory, using interval symbolic methods to create overapproximations, followed by
a refinement strategy based on symbolic gradient information. Some of these
implementations are also sound with respect to floating-point rounding errors,
which we have not considered here, mostly for lack of an LP solver that is both
fast and does outward rounding. Other NN verification tools such as Reluplex,
Marabou, ERAN, and NNV also use numeric LP solving. Another performance
difference is that we used the free GLPK library for LP solving and some other
tools used the commercial Gurobi optimizer, which is likely faster. Other refine-
ment approaches partition the input space to detect adversarial examples [11],
compute maximum sensitivity for verification [30], or perform refinement based
on optimization shadow prices [20].

Mixed integer-linear programming (MILP) solvers can be used to exactly
encode the reachable set of states through a ReLU network using the big-M
trick to encode the possible branches [16,23]. This introduces a new boolean
variables for each neuron, which may limit scalability. The MILP approach has
also been combined with a local search [5] that uses gradient information to
speed up the search process.

SMT approaches include the Reluplex [13] and Marabou [14], which modify
the Simplex linear programming algorithm by splitting nodes into two, which are
linked by the semantics of a ReLU. The search process is modified with updates
that fix the ReLU semantics for the node pairs. Another tool, Planet, combines
the MILP approach with SAT solving and linear overapproximation [6].

Here, we focused on input/output properties of the neural network, given
as linear constraints. This formulation can check for adversarial examples [9] in
image classification within some L∞ norm of a base image, which are essentially
box input sets. Other more meaningful semantic image perturbations such as
rotations, color shifting, and lighting adjustments can also be converted into
input/output set verification problems [19].

6 Conclusions

One of the major successes of formal verification is the development of fast model
checking algorithms. When talking about how improvements to model checking
algorithms came about, Ken McMillan noted:

“Engineering matters: you can’t properly evaluate a technique without an
efficient implementation.” [18]

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 85

With this in mind, we have strived to improve the practical efficiency of the
complete path-enumeration method for neural network verification. Although the
geometric path-enumeration method has been proposed before, we have shown
that, by a sequence of optimizations, the method’s scalability can be improved
by orders of magnitude.

One limitation is that we have focused on the ACAS Xu benchmarks.
Although there is a risk of overfitting our optimizations to the benchmarks being
considered, we believe these benchmarks are fairly general in that they contain
a mix of safe and unsafe instances, where the original verification times varied
from seconds to days. In particular, we believe these networks are similar to oth-
ers being used in control tasks, in terms of number of inputs and network size.
Further, practical considerations prevent us from considering too many more
benchmarks; our measurements already need over five days to run.

Unreported here, we were also able to run the implementation on larger per-
ception networks to analyze L∞ perturbation properties, networks with thou-
sands of neurons and hundreds of inputs, which succeeds when the perturba-
tion is sufficiently small. However, we believe path enumeration is the wrong
approach for those systems, as the number of paths quickly becomes too large
to enumerate. Instead, overapproximation and refinement methods would likely
work best, and evaluating optimizations for these methods may be done in future
work. One interpretation of the results presented here is that overapproximation
and refinement methods still have significant room for improvement, as it is
sometimes faster to explicitly enumerate benchmarks with millions of paths.

Many of the tools we have compared against also support more complicated
network structures, with different layer types and nonlinear activation func-
tions, whereas we only focused on the subclass of networks with ReLUs and
fully-connected layers. We believe that this is an important enough subclass of
neural networks that the results are still meaningful. Once the neural network
verification community is more mature, we expect a standard input format and
a set of categorized benchmarks will arise, similar to what has happened in the
SMT [2], software verification [3], and hybrid systems [1] communities.

Acknowledgment. The material presented in this paper is based upon work sup-
ported by the National Science Foundation (NSF) under grant numbers SHF 1910017
and FMitF 1918450, the Air Force Office of Scientific Research (AFOSR) through con-
tract numbers FA9550-18-1-0122 and FA9550-19-1-0288, the Air Force Research Lab-
oratory (AFRL) under prime contract FA8650-15-D-2516 and the Defense Advanced
Research Projects Agency (DARPA) through contract number FA8750-18-C-0089. The
U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
AFOSR, DARPA, or NSF. Any opinions, finding, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Air Force.

86 S. Bak et al.

A Box Bounds Algorithm for Box-Halfspace Intersection

The problem of computing the box bounds of an intersection of an initial box
and a single halfspace can be computed without LP. Consider a p-dimensional
initial box defined with lower and upper bounds [l1, u1] × . . . × [lp, up]. Call the
constraint defining the halfspace fα ≤ g, where α is a p-dimensional vector of
variables, f is a p-dimensional vector with entries f1, . . . , fp, and g is a scalar.

Based on the signs of the signs of f1, . . . , fp, we first find the vertex v∗ in the
box that minimizes the dot product f · v∗. This can be done by choosing the ith
element of v∗ as:

v∗
i =

{
li, if fi ≥ 0
ui, otherwise

(6)

If f · v∗ > g, then the intersection is the empty set. Otherwise, we attempt
to contract in each of the p dimensions one-by-one.

For dimension i, if the lower bound was used to define v∗
i , then we attempt

to decrease ui. If the upper bound was used to define v∗
i , then we attempt to

increase li. This is done by finding the point on the edge of the box which
intersects the halfspace (point q in Fig. 5). Without loss of generality, assume
the lower bound of dimension i defined v∗

i . The intersection point q is given
by (v∗

1 , v
∗
2 , . . . x, . . . v∗

p), where value of the ith coordinate, x, can be determined
from the single-variable equation q · f = g. If fi was zero, then this equation has
no solution, and we cannot contract in this dimension (the half-space and the
box edge where q must lie do not intersect). Otherwise, if we solve for x and find
x < ui, then we reduce ui, setting it to x. The process repeats for every other
dimension.

B Parallelization

The proposed approach can be parallelized in many ways. Here, we propose
and evaluate a work-stealing strategy, where each thread maintains a local set
of computation-state tuples and runs the high-level algorithm. Periodically, the
number of tuples in each local set are communicated using a shared data struc-
ture, and if some worker thread has no work remaining, the other threads will
push some of their local computation-state tuples to a shared global queue.

For this evaluation, we used the usual system setup described in the first
paragraph of Sect. 3, which we label Laptop. In addition, to see the effect of
more cores, we rented a c5.metal EC2 instance from Amazon Web Services,
which we refer to as AWS Server. This setup ran Ubuntu 18.08, and included a
dual Intel(R) Xeon(R) Platinum 8275CL processor running at 3.0 GHz, with a
total of 48 physical cores (96 with hyperthreading) and 384 GB of main memory.

To evaluate parallelism, we needed to use a benchmark with sufficient diffi-
culty where computation time dominates. For this, we chose ACAS Xu network

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 87

Fig. 8. Doubling the number of cores roughly halves the computation time, up to the
physical core count on each platform.

4-2 with specification 2. In an earlier ACAS Xu evaluation [14], this property
timed out (>55 min) or ran out of memory for every tool analyzed. The single-
threaded runtime on the Laptop platform with our enumeration approach was
655 s (about 11 min), which enumerated 484555 paths in the network.

An evaluation where we adjusted the number of cores available to the com-
putation process for each of the two platforms is shown in Fig. 8. The AWS Server
platform was faster than the Laptop setup and, with all the cores being used,
could enumerate the same 484555 paths in about 15 s. The linear trend on the
log-log graph shows continuous improvement as more cores are added, up to the
physical-core limit on each platform. The gains from hyperthreading are com-
paratively smaller. Even using all the cores, about 90% of the computation time
was in the step function, as opposed to managing shared state. With more cores,
further improvement through additional parallelization is likely possible.

Correctness Justification: Parallelization explores the same set of states, just
in a different order.

C Full Optimization Data

See Table 2.

88 S. Bak et al.

Table 2. Runtimes (sec) for each optimization. Dashes (—) are timeouts (10 min).

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

1 1-1 SAFE — — 399 166 359 159 129 65 50 10
1 1-2 SAFE — — 467 206 416 191 154 76 57 12
1 1-3 SAFE — — — 485 — 496 375 197 163 32
1 1-4 SAFE — — — 558 — 538 407 271 177 36
1 1-5 SAFE — — — 492 — 491 360 215 138 30
1 1-6 SAFE — — — — — — — — 445 95
1 1-7 SAFE — — 539 250 518 259 190 113 78 17
1 1-8 SAFE — — — 409 — 434 287 188 128 27
1 1-9 SAFE — — — 476 — 446 324 221 132 29
1 2-1 SAFE — — — — — — 523 343 216 47
1 2-2 SAFE — — — — — — — — 599 119
1 2-3 SAFE — — — — — — 564 332 227 47
1 2-4 SAFE — — — 383 — 412 272 193 120 27
1 2-5 SAFE — — — — — — — — — 188
1 2-6 SAFE — — — — — — — 517 400 82
1 2-7 SAFE — — — — — — — — — 195
1 2-8 SAFE — — — — — — — — — 163
1 2-9 SAFE — — — — — — — — — 271
1 3-1 SAFE — — — — — — 438 411 263 57
1 3-2 SAFE — — — — — — 521 308 214 46
1 3-3 SAFE — — — — — — — 596 390 84
1 3-4 SAFE — — — 442 — 438 323 221 141 30
1 3-5 SAFE — — — — — — — — 401 86
1 3-6 SAFE — — — — — — — — — 297
1 3-7 SAFE — — — — — — — — — 155
1 3-8 SAFE — — — — — — — — — 141
1 3-9 SAFE — — — — — — — — 507 107
1 4-1 SAFE — — — — — — — — 517 107
1 4-2 SAFE — — — — — — — — 568 124
1 4-3 SAFE — — — 537 — 508 396 233 160 34
1 4-4 SAFE — — — 523 — 584 365 245 155 34
1 4-5 SAFE — — — — — — — — 573 119
1 4-6 SAFE — — — — — — — — — 408
1 4-7 SAFE — — — — — — — — — 195
1 4-8 SAFE — — — — — — — — — 131
1 4-9 SAFE — — — — — — — — — 304
1 5-1 SAFE — — — — — — 482 322 232 48
1 5-2 SAFE — — — — — — — 426 303 64
1 5-3 SAFE — — — 508 — 498 366 214 143 32
1 5-4 SAFE — — — 305 — 289 211 136 98 21
1 5-5 SAFE — — — — — — — 368 264 57
1 5-6 SAFE — — — — — — — — — 176
1 5-7 SAFE — — — — — — — — 474 97
1 5-8 SAFE — — — — — — — — — 153
1 5-9 SAFE — — — — — — — — — 161
2 1-1 SAFE — — 404 159 368 165 128 67 46 10
2 1-2 UNSAFE — 58 24 11 23 12 9 5 4 1
2 1-3 UNSAFE — 463 192 74 177 78 58 32 26 21
2 1-4 UNSAFE — 31 15 6 13 6 5 4 3 1
2 1-5 UNSAFE — 4 2 1 1 1 1 .8 .8 1
2 1-6 UNSAFE — — — 517 — 579 373 260 175 19
2 1-7 SAFE — — 557 234 520 255 193 111 79 17
2 1-8 SAFE — — — 403 — 399 297 184 126 27
2 1-9 SAFE — — — 431 — 472 317 206 136 29
2 2-1 UNSAFE — 92 39 18 37 18 13 7 5 .9
2 2-2 UNSAFE — .7 .7 .7 .7 .7 .7 .7 .7 .8
2 2-3 UNSAFE — 8 4 2 4 2 2 1 1 1
2 2-4 UNSAFE — 4 2 1 2 1 1 1 .9 .9
2 2-5 UNSAFE — 37 17 8 18 8 6 3 3 1
2 2-6 UNSAFE — 284 146 58 144 65 48 25 18 8

(continued)

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 89

Table 2. (continued)

2 2-7 UNSAFE — 506 250 85 256 96 78 43 30 .9
2 2-8 UNSAFE — 51 26 10 24 10 9 5 4 2
2 2-9 UNSAFE — — — 291 — 320 242 132 94 2
2 3-1 UNSAFE — 190 68 31 50 24 20 12 9 4
2 3-2 UNSAFE — 250 88 38 96 44 27 19 14 1
2 3-3 SAFE — — — — — — — 590 409 83
2 3-4 UNSAFE — 197 106 41 97 42 32 18 13 .9
2 3-5 UNSAFE — 67 34 14 32 15 11 6 5 .9
2 3-6 UNSAFE — 27 10 5 11 5 5 3 2 5
2 3-7 UNSAFE — 49 25 11 25 12 9 5 4 1
2 3-8 UNSAFE — 266 112 42 114 50 32 20 15 2
2 3-9 UNSAFE — 20 11 5 10 5 4 2 2 2
2 4-1 UNSAFE — 115 45 19 40 20 14 8 7 5
2 4-2 SAFE — — — — — — — — 597 125
2 4-3 UNSAFE — 2 1 1 2 1 .9 .8 .8 .9
2 4-4 UNSAFE — 39 17 7 19 8 6 4 3 2
2 4-5 UNSAFE — 470 239 97 200 94 71 34 27 2
2 4-6 UNSAFE — 139 64 25 71 28 22 11 9 2
2 4-7 UNSAFE — 461 215 93 210 93 65 35 27 1
2 4-8 UNSAFE — 322 162 60 163 67 49 22 16 .9
2 4-9 UNSAFE — — 390 164 413 180 121 73 56 5
2 5-1 UNSAFE — 32 15 7 15 8 6 3 3 .9
2 5-2 UNSAFE — 91 39 18 30 16 12 6 6 1
2 5-3 UNSAFE — — — 460 — 487 316 201 141 24
2 5-4 UNSAFE — 2 1 1 1 1 .9 .8 .8 .9
2 5-5 UNSAFE — 261 107 48 111 46 36 19 14 2
2 5-6 UNSAFE — 208 102 41 95 41 30 15 10 2
2 5-7 UNSAFE — 107 52 21 53 22 18 8 7 2
2 5-8 UNSAFE — 302 161 63 160 67 50 27 19 1
2 5-9 UNSAFE — — 477 189 472 218 163 81 61 1
3 1-1 SAFE 561 526 232 116 125 80 58 103 58 12
3 1-2 SAFE 534 533 233 116 104 65 50 64 43 9
3 1-3 SAFE 143 147 75 35 30 20 15 19 14 4
3 1-4 SAFE 77 73 40 19 8 6 5 7 5 2
3 1-5 SAFE 88 84 42 21 10 7 6 8 6 2
3 1-6 SAFE 21 22 12 6 3 3 2 3 2 1
3 1-7 UNSAFE 8 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-8 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-9 UNSAFE 4 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 2-1 SAFE 147 142 75 34 31 21 16 24 14 4
3 2-2 SAFE 59 55 30 14 12 8 6 10 6 2
3 2-3 SAFE 108 101 50 25 19 12 9 14 9 3
3 2-4 SAFE 6 6 4 2 1 1 1 1 1 1
3 2-5 SAFE 33 33 18 9 4 4 3 4 3 1
3 2-6 SAFE 5 5 4 2 1 1 1 1 .9 1
3 2-7 SAFE 17 16 11 5 3 2 2 2 2 1
3 2-8 SAFE 6 6 5 2 1 1 1 1 1 1
3 2-9 SAFE 4 4 3 2 .9 .9 .8 1 .9 .9
3 3-1 SAFE 57 53 25 12 11 7 5 9 6 2
3 3-2 SAFE 578 537 226 117 93 53 40 59 36 8
3 3-3 SAFE 128 128 65 31 22 14 11 13 11 3
3 3-4 SAFE 27 26 16 7 5 4 3 4 2 1
3 3-5 SAFE 16 16 10 5 2 2 2 2 2 1
3 3-6 SAFE 31 33 20 10 5 4 3 3 3 1
3 3-7 SAFE 2 2 2 1 .8 .8 .7 .8 .8 .8
3 3-8 SAFE 12 12 8 4 2 2 1 2 1 1
3 3-9 SAFE 16 15 10 5 3 2 2 2 2 1
3 4-1 SAFE 18 18 11 5 5 3 2 4 3 1
3 4-2 SAFE 189 187 88 43 44 24 19 25 16 4
3 4-3 SAFE 282 283 136 63 64 35 29 32 24 5
3 4-4 SAFE 12 11 7 4 2 1 1 2 1 1
3 4-5 SAFE 4 4 3 2 1 1 .9 1 .9 1
3 4-6 SAFE 33 34 20 10 7 5 4 4 3 1
3 4-7 SAFE 15 15 11 5 2 2 2 2 2 1
3 4-8 SAFE 11 12 8 4 2 1 1 2 1 1
3 4-9 SAFE 12 11 8 4 2 2 2 2 1 1
3 5-1 SAFE 97 91 50 25 19 12 9 14 9 3
3 5-2 SAFE 18 19 11 6 5 3 2 4 2 1

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

(continued)

90 S. Bak et al.

Table 2. (continued)

3 5-3 SAFE 22 23 12 6 5 3 3 4 3 1
3 5-4 SAFE 11 11 7 4 2 2 1 2 1 1
3 5-5 SAFE 15 14 10 5 2 2 2 2 2 1
3 5-6 SAFE 23 21 14 7 3 3 2 3 2 1
3 5-7 SAFE 2 2 2 1 .8 .8 .7 .8 .7 .8
3 5-8 SAFE 37 38 24 10 6 4 4 5 3 1
3 5-9 SAFE 2 2 2 1 .9 .8 .7 .8 .8 .8
4 1-1 SAFE 149 150 72 34 33 22 16 23 16 4
4 1-2 SAFE 135 130 52 27 21 15 12 16 11 3
4 1-3 SAFE 95 96 44 23 18 12 10 13 9 3
4 1-4 SAFE 12 11 7 4 2 2 2 2 2 1
4 1-5 SAFE 81 84 42 20 12 9 8 9 7 2
4 1-6 SAFE 41 37 20 11 7 5 4 6 4 2
4 1-7 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 1-8 UNSAFE 7 .8 .7 .7 .7 .7 .7 .7 .7 .8
4 1-9 UNSAFE 5 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 2-1 SAFE 38 41 21 11 7 5 5 7 4 2
4 2-2 SAFE 50 51 27 13 8 6 5 6 4 2
4 2-3 SAFE 9 9 6 3 2 2 2 2 1 1
4 2-4 SAFE 8 9 5 3 2 2 1 2 1 1
4 2-5 SAFE 28 27 14 7 6 4 4 4 3 1
4 2-6 SAFE 15 15 9 5 3 2 2 2 2 1
4 2-7 SAFE 7 7 5 3 1 1 1 1 1 1
4 2-8 SAFE 40 43 25 11 5 4 3 4 3 1
4 2-9 SAFE 3 3 3 2 .9 .9 .9 .9 .9 .9
4 3-1 SAFE 56 52 27 13 7 6 5 6 5 2
4 3-2 SAFE 63 61 31 15 12 9 7 11 7 2
4 3-3 SAFE 10 9 6 3 2 2 2 2 2 1
4 3-4 SAFE 12 12 7 3 2 2 2 2 2 1
4 3-5 SAFE 38 40 22 10 8 6 4 5 4 2
4 3-6 SAFE 20 20 12 6 3 3 2 3 2 1
4 3-7 SAFE 17 17 11 5 3 2 2 2 2 1
4 3-8 SAFE 7 7 5 2 2 2 1 1 1 1
4 3-9 SAFE 51 48 29 13 7 5 5 5 4 2
4 4-1 SAFE 7 7 5 3 2 1 1 2 1 1
4 4-2 SAFE 14 14 8 5 3 2 2 2 2 1
4 4-3 SAFE 26 27 14 8 5 4 3 5 3 1
4 4-4 SAFE 20 20 11 6 3 2 2 2 2 1
4 4-5 SAFE 17 16 9 5 3 2 2 2 2 1
4 4-6 SAFE 30 30 15 7 5 3 3 4 3 1
4 4-7 SAFE 3 3 2 1 1 .9 .9 .9 .8 .8
4 4-8 SAFE 24 23 16 7 4 3 2 3 2 1
4 4-9 SAFE 43 40 24 12 5 4 4 4 4 2
4 5-1 SAFE 57 53 26 14 10 7 6 8 5 2
4 5-2 SAFE 38 34 17 9 7 4 4 5 4 2
4 5-3 SAFE 14 13 8 4 3 2 2 3 2 1
4 5-4 SAFE 13 13 8 4 2 2 2 2 2 1
4 5-5 SAFE 17 17 11 6 3 3 2 2 2 1
4 5-6 SAFE 10 10 6 3 2 2 2 2 1 1
4 5-7 SAFE 3 3 2 1 .9 .8 .8 .9 .8 .8
4 5-8 SAFE 8 8 6 3 2 1 1 1 1 1
4 5-9 SAFE 14 13 8 4 2 2 2 2 2 1

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

D Full Tool Comparison Data

This section contains the complete data measured in the optimization improve-
ments from Sect. 3 (Table 3).

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 91

Table 3. Runtimes (sec) for each tool. Dashes (—) are timeouts (10min).

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

1 1-1 SAFE 95 — 10 .1
1 1-2 SAFE 168 — 12 .2
1 1-3 SAFE — — 32 1
1 1-4 SAFE — — 36 2
1 1-5 SAFE 119 — 30 .2
1 1-6 SAFE 110 — 95 .2
1 1-7 SAFE 63 — 17 .1
1 1-8 SAFE 56 — 27 .1
1 1-9 SAFE 43 — 29 .1
1 2-1 SAFE — — 47 .6
1 2-2 SAFE — — 119 1
1 2-3 SAFE — — 47 1
1 2-4 SAFE 294 — 27 .5
1 2-5 SAFE — — 188 4
1 2-6 SAFE — — 82 3
1 2-7 SAFE — — 195 11
1 2-8 SAFE — — 163 3
1 2-9 SAFE — — 271 8
1 3-1 SAFE — — 57 .4
1 3-2 SAFE — — 46 .7
1 3-3 SAFE 521 — 84 1
1 3-4 SAFE 510 — 30 .6
1 3-5 SAFE — — 86 2
1 3-6 SAFE — — 297 28
1 3-7 SAFE — — 155 12
1 3-8 SAFE — — 141 8
1 3-9 SAFE — — 107 11
1 4-1 SAFE — — 107 16
1 4-2 SAFE — — 124 3
1 4-3 SAFE — — 34 1
1 4-4 SAFE 387 — 34 .7
1 4-5 SAFE — — 119 3
1 4-6 SAFE — — 408 22
1 4-7 SAFE — — 195 23
1 4-8 SAFE — — 131 47
1 4-9 SAFE — — 304 21
1 5-1 SAFE 353 — 48 .4
1 5-2 SAFE 522 — 64 .7
1 5-3 SAFE 128 — 32 .2
1 5-4 SAFE 574 — 21 .4
1 5-5 SAFE — — 57 1
1 5-6 SAFE — — 176 15
1 5-7 SAFE — — 97 3
1 5-8 SAFE — — 153 16
1 5-9 SAFE — — 161 8
2 1-1 SAFE — — 10 .6
2 1-2 UNSAFE 254 — 1 3
2 1-3 UNSAFE — — 21 11
2 1-4 UNSAFE — — 1 10
2 1-5 UNSAFE — — 1 —
2 1-6 UNSAFE — — 19 52
2 1-7 SAFE — — 17 6
2 1-8 SAFE — — 27 23
2 1-9 SAFE — — 29 11
2 2-1 UNSAFE 59 — .9 .1

(continued)

92 S. Bak et al.

Table 3. (continued)

2 2-2 UNSAFE — — .8 .1
2 2-3 UNSAFE 549 — 1 .1
2 2-4 UNSAFE 18 — .9 .1
2 2-5 UNSAFE 547 — 1 .1
2 2-6 UNSAFE — — 8 .1
2 2-7 UNSAFE 24 — .9 .1
2 2-8 UNSAFE 102 — 2 .1
2 2-9 UNSAFE — — 2 —
2 3-1 UNSAFE 97 — 4 .1
2 3-2 UNSAFE 345 — 1 —
2 3-3 SAFE — — 83 —
2 3-4 UNSAFE — — .9 .1
2 3-5 UNSAFE 319 — .9 .1
2 3-6 UNSAFE 471 — 5 .1
2 3-7 UNSAFE — — 1 —
2 3-8 UNSAFE — — 2 .1
2 3-9 UNSAFE 457 — 2 .1
2 4-1 UNSAFE — — 5 .2
2 4-2 SAFE — — 125 —
2 4-3 UNSAFE 566 — .9 .1
2 4-4 UNSAFE 288 — 2 .1
2 4-5 UNSAFE — — 2 .1
2 4-6 UNSAFE 419 — 2 .1
2 4-7 UNSAFE — — 1 .1
2 4-8 UNSAFE 336 — .9 .1
2 4-9 UNSAFE — — 5 45
2 5-1 UNSAFE 119 — .9 .1
2 5-2 UNSAFE 24 — 1 .1
2 5-3 UNSAFE — — 24 —
2 5-4 UNSAFE 360 — .9 .1
2 5-5 UNSAFE 278 — 2 .1
2 5-6 UNSAFE 547 — 2 .1
2 5-7 UNSAFE 17 — 2 .1
2 5-8 UNSAFE 246 — 1 .1
2 5-9 UNSAFE 47 — 1 .1
3 1-1 SAFE — 564 12 104
3 1-2 SAFE — 283 9 2
3 1-3 SAFE — 58 4 3
3 1-4 SAFE 342 12 2 .3
3 1-5 SAFE 520 17 2 .2
3 1-6 SAFE 43 4 1 .1
3 1-7 UNSAFE 12 2 .8 .1
3 1-8 UNSAFE 12 2 .8 .1
3 1-9 UNSAFE 12 1 .8 .05
3 2-1 SAFE — 70 4 21
3 2-2 SAFE — 23 2 8
3 2-3 SAFE — 39 3 3
3 2-4 SAFE 15 2 1 .5
3 2-5 SAFE 18 7 1 .4
3 2-6 SAFE 15 1 1 .04
3 2-7 SAFE 16 4 1 .3
3 2-8 SAFE 15 2 1 .1
3 2-9 SAFE 13 1 .9 .03
3 3-1 SAFE 406 21 2 3
3 3-2 SAFE — 247 8 6
3 3-3 SAFE — 35 3 .2
3 3-4 SAFE 47 8 1 .4
3 3-5 SAFE 15 4 1 5
3 3-6 SAFE 390 7 1 151
3 3-7 SAFE 13 .9 .8 .1
3 3-8 SAFE 36 3 1 4
3 3-9 SAFE 45 4 1 3
3 4-1 SAFE — 8 1 8
3 4-2 SAFE — 88 4 97
3 4-3 SAFE — 130 5 2
3 4-4 SAFE 14 2 1 .1
3 4-5 SAFE 14 1 1 .1
3 4-6 SAFE 102 11 1 .2

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

(continued)

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 93

Table 3. (continued)

3 4-7 SAFE 96 3 1 .6
3 4-8 SAFE 85 2 1 2
3 4-9 SAFE 33 3 1 .1
3 5-1 SAFE — 35 3 21
3 5-2 SAFE — 8 1 2
3 5-3 SAFE 146 8 1 .2
3 5-4 SAFE 17 3 1 .2
3 5-5 SAFE 24 4 1 .5
3 5-6 SAFE 88 5 1 .9
3 5-7 SAFE 14 .6 .8 .04
3 5-8 SAFE 43 9 1 .1
3 5-9 SAFE 14 .9 .8 .1
4 1-1 SAFE — 82 4 1
4 1-2 SAFE — 50 3 1
4 1-3 SAFE — 36 3 .4
4 1-4 SAFE 105 3 1 .2
4 1-5 SAFE 504 24 2 .4
4 1-6 SAFE 89 12 2 .2
4 1-7 UNSAFE 12 2 .8 .1
4 1-8 UNSAFE 12 2 .8 .1
4 1-9 UNSAFE 12 2 .8 .1
4 2-1 SAFE 171 14 2 .8
4 2-2 SAFE 520 14 2 2
4 2-3 SAFE 77 3 1 .8
4 2-4 SAFE 23 3 1 .2
4 2-5 SAFE 61 11 1 .4
4 2-6 SAFE 90 5 1 .3
4 2-7 SAFE 14 2 1 .1
4 2-8 SAFE 43 8 1 .1
4 2-9 SAFE 13 1 .9 .03
4 3-1 SAFE — 13 2 1
4 3-2 SAFE 134 27 2 .4
4 3-3 SAFE 21 4 1 .1
4 3-4 SAFE 20 4 1 .2
4 3-5 SAFE 59 15 2 1
4 3-6 SAFE 66 5 1 2
4 3-7 SAFE 16 4 1 .3
4 3-8 SAFE 29 3 1 .3
4 3-9 SAFE 63 12 2 1
4 4-1 SAFE 78 3 1 3
4 4-2 SAFE 60 5 1 2
4 4-3 SAFE 134 10 1 1
4 4-4 SAFE 41 5 1 1
4 4-5 SAFE 62 4 1 2
4 4-6 SAFE 14 8 1 .04
4 4-7 SAFE 21 1 .8 .2
4 4-8 SAFE 37 6 1 .2
4 4-9 SAFE 25 8 2 .1
4 5-1 SAFE 339 19 2 3
4 5-2 SAFE 51 12 2 .5
4 5-3 SAFE 52 5 1 .2
4 5-4 SAFE 31 4 1 .2
4 5-5 SAFE 49 5 1 .6
4 5-6 SAFE 76 3 1 .3
4 5-7 SAFE 14 1 .8 .04
4 5-8 SAFE 31 3 1 .1
4 5-9 SAFE 26 3 1 .1

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

94 S. Bak et al.

References

1. Althoff, M., et al.: ARCH-COMP19 category report: continuous and hybrid sys-
tems with linear continuous dynamics. In: ARCH 2019, 6th International Workshop
on Applied Verification of Continuous and Hybrid Systems, pp. 14–40 (2019)

2. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, England), vol. 13, p. 14 (2010)

3. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 38

4. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of
linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 26

5. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

6. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018)

8. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

10. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0.
In: 2013 European Control Conference (ECC), pp. 502–510. IEEE (2013)

11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

12. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

14. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

15. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

16. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-540-31954-2_19
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 95

17. Marston, M., Baca, G.: ACAS-Xu initial self-separation flight tests (2015). http://
hdl.handle.net/2060/20150008347

18. McMillan, K.: A perspective on formal verification. In: David Dill @ 60 Workshop,
colocated with CAV (2017)

19. Mohapatra, J., Chen, P.-Y., Liu, S., Daniel, L., et al.: Towards verifying
robustness of neural networks against semantic perturbations. arXiv preprint
arXiv:1912.09533 (2019)

20. Royo, V.R., Calandra, R., Stipanovic, D.M., Tomlin, C.: Fast neural network ver-
ification via shadow prices. arXiv preprint arXiv:1902.07247 (2019)

21. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10802–10813 (2018)

22. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (ICLR
2019) (2019)

23. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

24. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

25. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020)

26. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems, pp.
6367–6377 (2018)

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
pp. 1599–1614 (2018)

28. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. arXiv preprint arXiv:1810.01989 (2018)

29. Xiang, W., Tran, H.-D., Johnson, T.T.: Reachable set computation and
safety verification for neural networks with ReLU activations. arXiv preprint
arXiv:1712.08163 (2017)

30. Xiang, W., Tran, H.-D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

http://hdl.handle.net/2060/20150008347
http://hdl.handle.net/2060/20150008347
http://arxiv.org/abs/1912.09533
http://arxiv.org/abs/1902.07247
http://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-030-30942-8_39
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1712.08163

96 S. Bak et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Improved Geometric Path Enumeration for Verifying ReLU Neural Networks
	1 Introduction
	2 Background
	2.1 Neural Networks and Verification
	2.2 Basic Geometric Path Enumeration Algorithm
	2.3 Spatial Data Structures
	2.4 ACAS Xu Benchmarks

	3 Improvements
	3.1 Local Search Type (DFS vs BFS)
	3.2 Bounds for Splitting
	3.3 Fewer LPs with Concrete Simulations
	3.4 Zonotope Prefilter
	3.5 Eager Bounds Computation
	3.6 Zonotope Contraction

	4 Evaluation with Other Tools
	5 Related Work
	6 Conclusions
	A Box Bounds Algorithm for Box-Halfspace Intersection
	B Parallelization
	C Full Optimization Data
	D Full Tool Comparison Data
	References

