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Editor’s notes:
Neural network control systems are often at the heart of autonomous 
systems. The authors classify existing verification methods for these 
systems and advocate the necessity of integrating verification techniques 
in the training process to enhance robustness.

—Selma Saidi, TU Dortmund

 Artificial intelligence (AI) is in a renais-
sance, and AI methods, such as machine learning 
(ML), are now at a level of accuracy and performance 
to be competitive or better than humans for many 
tasks. Deep neural networks (DNNs), in particular, 
are increasingly effective at recognition and classifi-
cation tasks. For instance, much of the sensing, esti-
mation, and fusion of data that enables applications 
such as autonomous driving [1], aircraft collision 
avoidance [2], and other autonomous cyber–phys-
ical systems (CPSs) [3] increasingly relies on DNNs 
and related ML techniques. However, this progress 
comes at a significant risk when these methods 
are deployed in operational safety-critical systems, 
especially those without direct human supervision. 
Notably, it has been observed that neural networks 
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can react in unexpected 
and incorrect ways to 
even slight perturba-
tions of their inputs [4]. 
Therefore, there is a need 
for methods beyond 
testing [5] that can pro-
vide formal guarantees 

about the behavioral properties and specifications 
of autonomous CPS with learning-enabled compo-
nents (LECs), especially for the purpose of safety 
assurance [6]. There are two main streams of veri-
fication for intelligent systems with ML components. 
The first one focuses on the correctness of only the 
learning components while the second one aims 
at proving the correctness of the whole system in 
which the learning-based component interacts with 
the physical dynamics of the system. As one of the 
most important and prevalent AI/ML techniques, this 
article specifically surveys the current state-of-the-art 
for safety verification of autonomous CPS with neu-
ral network controllers.

Artificial neural networks are used in systems that 
introduce ML components to resolve complex prob-
lems. This can be attributed to the impressive ability 
of neural networks to approximate complex func-
tions as shown by the universal approximation the-
orem [7]. Neural networks are trained over a finite 
amount of input and output data, and are expected 
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to generalize the said data and produce desirable 
outputs for the given inputs and even for previously 
unseen inputs. The data-driven nature and lack of 
efficient methods for analysis of neural networks 
leads to, in most cases, the treatment of neural net-
works as black boxes with no assurance in safety. 
However, due to the rapid development AI-inspired 
applications, neural networks have recently been 
deployed in several safety-critical systems, such as 
autonomous systems [1], [3], and aircraft collision 
avoidance procedures [2]. Regrettably, it has been 
observed that neural networks can react in unex-
pected and incorrect ways to even slight perturba-
tions of their inputs [4]. Thus, methods are needed 
that can provide formal guarantees about the behav-
ioral properties of neural networks, especially for the 
purpose of safety assurance [6].1

Verification of neural networks
Verifying neural networks is a difficult problem, 

and it has been demonstrated that validating even 
simple properties about their behavior is NP-complete 
[10]. The intuition of many approaches is shown in 
Figure 1. The difficulties encountered in verification 
mainly arise from the presence of activation functions 
and complex structures (i.e., an interconnected group 
of nodes, inspired by biological neurons) of neural 
networks. Moreover, neural networks are large-scale, 
nonlinear, nonconvex, and often incomprehensible 
to humans so that traditional verification tools are 
not applicable for neural networks. The action of a 

neuron is described by the activation function in the 

form of y f w xi ijj
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input of the i th neuron, wij is the weight from the j th 
input to the i th neuron, θi is called the bias of the ith 
neuron, yi is the output of the ith neuron, and f (.) is 
the activation function. Typically, the activation func-
tion is either the rectified linear unit (ReLU), logistic 
sigmoid, hyperbolic tangent, the exponential linear 
unit, or another linear function. In general, existing 
methods for neural network verification can be cat-
egorized into geometric (reachability) methods, 
mixed-integer linear programming (MILP) methods, 
satisfiability (SAT)-based and SAT modulo theory 
(SMT)-based methods, optimization-based methods, 
and others.

1 This article summarizes an extended survey of work in this area [8]. A related survey 
in the area is [9].  Source code for many of the methods described are available in 
our NNV tool (https://github. com/verivital/nnv), and other methods corresponding to 
[9] are also available (https://github.com/sisl/NeuralVerification.jl/).

Geometric and reachability methods
To circumvent the difficulties brought by the 

nonlinearities present in the neural networks, many 
recent results focus on activation functions of the form  
f (x) = max(0, x), known as ReLUs. Taking advantage of 
the piecewise linear feature of ReLUs and considering 
the input as polyhedra or special classes of polyhedra, 
such as zonotopes or hyper-rectangles, the verification 
process can be turned into a sequence of operations 
on polyhedra. For instance, in [11], the computation 
process involves standard polytope operations, such 
as intersection and projection, and all of these can be 
computed by employing sophisticated computational 
geometry tools, such as MPT3 [12]. The essence of the 
approach is to be able to obtain an exact output set with 
respect to the input set. However, the number of poly-
topes involved in the computation process increases 
exponentially with the number of neurons in its worst 
case performance which makes the method not scala-
ble to neural networks with a large number of neurons. 
Within the polyhedra computation framework, further 
developments have been made in the recent tool NNV 
[13]–[17] by using star sets, an efficient representation 
for convex sets, to enhance the scalability with respect 
to polyhedral operations. Due to the parallelizability of 
the approach, parallel computing techniques can be 
employed to speed up the computation to some extent. 

In the framework of zonotopes, a verification 
engine for ReLU neural networks called AI2 was pro-
posed in [18]. In this approach, perturbed inputs and 
safety specifications are abstracted as zonotopes, 
and reasoning about their behaviors use operations 
over zonotopes. The framework AI2 is capable of han-
dling neural networks of size up to 50,000 neurons 
and, in particular, their approach has had success 
dealing with convolutional neural networks (CNNs).  
Figure 2 shows a representative reachability com-
putation. The star set approach within NNV has also 
recently been extended to CNNs using an extension of 
star sets to the computer vision domain called Imag-
eStars [15], applied to large classification networks 
such as VGG16 and VGG19 that have tens-to-hundreds 
of millions of parameters [19]. Another special class 
of polyhedra that are called interval sets or hyper-rec-
tangles is also considered for verification problems. 
These interval-based methods perform reachability 
analysis as the propagation of interval sets across hid-
den layers and eventually derive the output intervals. 
Specification-guided methods have been developed 
to provide an adaptive partitioning method for the 
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input space [20]. By making use of the information 
of specification, unnecessary partitioning can be 
avoided so that the computational complexity can 
be reduced significantly. In [21], an interval symbolic 
method is developed to compute rigorous bounds for 
outputs of neural networks. Their approach is easily 
parallelizable and makes use of symbolic interval 
analysis to minimize overestimation (conservative-
ness). The authors implement their approach as part 
of ReluVal, a system for checking the security proper-
ties of ReLU-based neural networks.

MILP methods
The use of binary variables to encode piecewise 

linear functions is standard in optimization [22]. In 
[23], the constraints of ReLU functions are encoded 
as an MILP. Combining output specifications that are 
expressed in terms of linear programming (LP), the 
verification problem for output set eventually turns 
to the feasibility problem of MILP. For layer i, the 
MILP encoding is given as
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where M is sufficiently large so that it is larger than 
the maximum possible output at any node. A simi-
lar MILP problem is formulated in [24], where the 
authors conduct a robustness analysis and search 
for adversarial examples in ReLU neural networks. It 
is well known that MILP is an NP-hard problem and, 
Dutta et al. [25] and [26] elucidate significant efforts 
for solving MILP problems efficiently to make the 
approach scalable. Their methods combine MILP 
solvers with a local search yielding a more efficient 
solver for range estimation problems of ReLU neural 
networks than several other approaches. Basically, a 
local search is conducted using a gradient search 
and then a global search is formulated as MILP. 
Instead of finding the global optimum directly, it 
performs the search seeking values greater/smaller 
than the upper/lower bound obtained in the 
preceding local search. This is the primary reason 
for the computational complexity reduction. This 
MILP-based approach is integrated in a tool called 
Sherlock [27]. In [28], an MILP encoding scheme 
is used for a class of neural networks whose input 

spaces are encoded as binaries. This MILP encoding 
has a similar flavor to the other encodings present 
in the research literature for nonbinarized networks. 
In their framework, since all the inputs are integer 
values, the real-valued variables can be rounded so 
that they can be safely removed, resulting in a refor-
mulated integer LP (ILP) problem that is smaller 
in comparison to the original MILP encoding. With 
the ILP encoding, an SAT solver is utilized to reason 
about the behavior of a binarized neural network of 
hundreds of neurons.

Satisfiability and SMT methods
In [10], an SMT solver called Reluplex is devel-

oped. An algorithm, that stems from the Simplex 
algorithm for linear functions, for ReLU functions 
is proposed. Due to the piecewise linear feature 
of ReLU functions, each node is divided into two 
nodes. Thus, in their formulation, each node consists 
of a forward-facing and backward-facing node. If the 
ReLU semantics are not satisfied, two additional 
update functions are given to fix the mismatching 
pairs. Thus, the search process is similar to the Sim-
plex algorithm that pivots and updates the basic and 
nonbasic variables with the addition of a fixing pro-
cess for ReLU activation pairs. This method is applied 
on a DNN implementation of a next-generation air-
borne collision avoidance system for unmanned 
aircraft (ACAS-X), which has been used as a bench-
mark for a number of successive works. Scheibler 
et al. [29] used bounded model checking (BMC) to 
create formulas that are solved using the SMT-solver 
iSAT3, which is able to deal with transcendental 
functions, such as exp and cos (that exist in various 
activation functions) that frequently appear in neu-
ral network controllers and plant models. Although 
the verification framework is rigorously developed, 
the verification problem suffers scalability barriers 
due to the curse of dimensionality and state–space 
explosion problems. An approach for finding adver-
sarial inputs using SMT solvers that relies on a layer- 
by-layer analysis is presented in [30]. The work 
focuses on the robustness of a neural network where 
safety is defined in terms of classification invariance 
within a small neighborhood of one individual input. 
An exhaustive search of the region is conducted by 
employing discretization and propagating the analy-
sis layer by layer. In a similar manner, a recent paper, 
proposed by Ruan et al. [31], generalizes the local 
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robustness criterion into a global notion on a set of 
test examples.

An early software tool in this area, called Planet, 
was developed based on the MILP verification 
approaches [32]. This LP-based framework combine 
SAT solving and linear over-approximation of piece-
wise linear functions to verify ReLU neural networks 
against convex specifications. Given the output of a 
ReLU denoted by d and the input c l u∈ [ ], , the rela-
tionship between c and d can be approximated by the 
linear constraints d d c≥ ≥0, , and d ≥ u ((c–l )/(u–l )). 
Based on the LP problem formulation, additional 
heuristic algorithms were developed to detect infea-
sibility and imply phase inference faster. Pulina and 
Tacchella [33] presented an abstraction-refinement 
and SMT-based tool for verifying feed-forward neural 
networks. Their scheme is based on encoding the 
network into a Boolean satisfaction problem over 
linear arithmetic constraints.

Other optimization-based methods
As some of the earliest papers for neural network 

verification, in [34] and [35], a piecewise-lineariza-
tion of the nonlinear activation functions is used to 
reason about their behavior. In this framework, the 
authors replace the activation functions with piece-
wise constant approximations and use the bounded 
model checker hybrid satisfiability (HySAT) [36] to 
analyze various properties. The authors highlight the 
difficulty of scaling this technique and, currently, 
are only able to tackle small networks with at most 
20 hidden nodes.

In [37], a simulation-based approach was devel-
oped, which used a finite number of simulations/
computations to estimate the reachable set of mul-
tilayer neural networks in a general form. Despite 
this success, the approach lacks the ability to resolve 
the reachable set computation problem for neural 
networks that are large-scale, nonconvex, and non-
linear. Still, simulation-based approaches, like the 
one developed in [37], present a plausibly practical 
and efficient way of reasoning about neural network 
behavior. The critical step in improving simula-
tion-based approaches is bridging the gap between 
finitely many simulations and the essentially infinite 
number of inputs that exist in the continuity set. A 
critical concept that is introduced in the work is 
called maximal sensitivity, which measures the max-
imal deviation of outputs for a set of inputs suffer-
ing disturbances in a bounded cell. The output set 

of the neural network can be over-approximated 
by the union of a finite number of reachtubes com-
puted using a union of individual cells that cover 
the input set. Thus, verification of a network can be 
done by checking the existence of intersections of 
the estimated reachable set and safety regions. This 
approach has been extended to allow for the reach-
able set estimation and verification of nonlinear 
autoregressive-moving average (NARMA) models in 
the form of neural networks [38] as well as closed-
loop system verification with the help of the state-
of-the-art reachability tool for hybrid systems dealing 
with the plant dynamics [39].

In a recent result [40], an improved simula-
tion-guided method is developed to reduce compu-
tational complexity. Unnecessary input partitions are 
avoided as the corresponding partition behaviors 
upon input space are guided by simulations instead 
of uniform partition. In particular, it is applicable to 
a variety of neural networks regardless of the spe-
cific form of the activation functions. Given a neural 
network, there is a tradeoff between the precision of 
the reachable set estimation and the number of sim-
ulations used to execute the procedure. In addition, 
since the approach executes in a layer-by-layer man-
ner, the approximation error will accumulate as the 
number of layers present in the network increases. 
In this case, more simulations are required at the 
expense of increasing the computational cost. A 
novel approach for neural network verification based 
on optimization duality has been developed [41]. The 
verification problem is posed as an optimization prob-
lem that tries to find the largest violation of a property 
related to the output of the network.

Other methods
There exists a rich literature of other methods for 

neural network verification [8], [9], but we highlight 
a few. A comparison of the verification approaches 
mentioned above can be found in [42]. Addition-
ally, the authors present a novel approach for neu-
ral network verification called branch and bound 
optimization. This approach adds one more layer 
behind the output layer cy – b to represent the linear 
property cy > b that we wish to verify. If cy – b > 0, 
it means that the property is satisfied, otherwise it is 
unsatisfiable. Thus, the verification problem is con-
verted into a computation of the minimum or max-
imum value of the output of the neural network. By 
treating the neural network as a nonlinear function, 
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model-free optimization methods are utilized to 
find optimal solutions. To have a global optimum, 
the input space is also discretized into subregions. 
This approach is not only applicable to ReLU neu-
ral networks, but the model-free method allows the 
approach to be applied to neural networks with 
more general activation functions. However, despite 
its generalization capabilities, in the model-free 
framework, there is no guarantee that the algorithm 
will converge to a solution.

Cheng et al. [43] studied the verification of 
binarizied neural networks (BNNs). The forward 
propagation of input signals is reduced to bit arith-
metic. The authors argue that the verification of 
BNNs can be reduced to hardware verification and 
represents a more scalable problem than tradi-
tional neural network verification. A randomized 
approach for rigorously verifying neural networks 
in safety-critical applications has been developed 
[44]. In an effort to mitigate challenges related to 
the curse of dimensionality, the authors make use 
of Monte Carlo methods to estimate the probabil-
ity of neural network failure. However, although 
Monte Carlo methods are more efficient than 
methods that deterministically search through 
hyper-rectangular input spaces, they are proba-
bilistic in nature. The authors further demonstrate 
that although the number of samples needed to 
guarantee this may be large, it is not as prohibitive 
as other methods.

In addition to neural network verification, there 
are also results on falsification and testing of neural 
networks. Several ideas for integrating semantics 

into adversarial learning have been explored, 
including a semantic modification space and the 
use of more detailed information about the outputs 
produced by ML models [45]. In work by Weng et al. 
[46], an attack independent robustness metric 
against adversarial examples for neural networks is 
described. Their approach converts the robustness 
analysis into a local Lipschitz constant estimation 
problem and uses extreme value theory for efficient 
solving. In [47], an automatic test case generator is 
presented that leverages real-world changes in driv-
ing conditions like rain, fog, lighting conditions, etc. 
The tool, called DeepTest, systematically explores 
different parts of the DNN logic by generating test 
inputs that maximize the number of activated neu-
rons. An improved version of the tool, called DeepX-
plore, is proposed in [48], which is the first efficient 
whitebox testing framework for large-scale deep 
learning systems.

Verification and fasification of neural 
network control systems

Verification and falsification of feedback neural 
network control systems (NNCSs) have become an 
emerging research topic recently. Unlike verifica-
tion of a neural network where the specifications 
of interest are usually defined as predicates over 
the outputs of the network, in NNCS, the specifi-
cation are usually defined based on the states of 
the plant controlled by a neural network control-
ler. Notably, the behavior of the whole feedback 
control system depends not only on the behavior 
of the neural network controller but also the sys-
tem’s physical dynamics which is usually described 
in terms of ordinary differential equations (ODEs). 
The interaction between the nonlinear neural net-
work controller and the physical dynamics makes 
the behavior of the whole system complicated and 
difficult to analyze. To overcome this challenge, 
several methods have been proposed recently to 
verify system-level safety properties of NNCS with 
feedforward neural network controllers.

The polyhedron-based approach [11] has been 
extended for safety verification of NNCS with linear 
and discrete dynamics [49]. Recently, a hybridiza-
tion approach has been proposed in the Verisig tool 
[50] that transforms an NNCS to an equivalent non-
linear hybrid system that can be verified using Flow* 
[55], a verification tool for nonlinear hybrid  sys-
tems. This  approach applies for neural network 

Figure 1. Illustration of neural network 
reachability, where the output reachable set of a 
mathematical function F : �n � �m representing the 
neural network’s behavior under a set of inputs 

( )F = ⊆ ¬X Y P is defined and computed in an exact or over-
approximative manner. If ( )F = ⊆ ¬X Y P , then 
safety property P¬  holds, while if P ∩ ≠ ∅Y  /0, then 
unsafe states may be reached.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore.  Restrictions apply. 



29January/February 2022

controllers with smooth activation functions, such 
as sigmoid and hyperbolic tangent (Tanh). Sound 
and complete satisfiability modulo convex (SMC)-
based approaches for formal verification of NNCS 
have been developed, in which the closed-loop 
NNCS with linear and discrete dynamics is encoded 
as monotone SMC formulas that were formally ver-
ified by SMC decision procedures [51]. In [52], a 
new abstraction method has been proposed for 
NNCS verification in which an “local” Taylor model 
over-approximation of neural network controller was 
obtained and integrated in Flow* [55] to compute a 
tight over-approximation reachable set of NNCS. The 
advantage of this method is that it is fast and scala-
ble and more importantly, it is proposed to reduce 
significantly over-approximation errors in reachable 
set computation process. In [54], a new reachabil-
ity approach based on Bernstein polynomials has 
been proposed to verify NNCS with more general of 
activation functions. This approach can control the 
over-approximation error in the analysis; however, 
the cost of being more accurate is increased com-
putation time.

An extension of the star-based reachability anal-
ysis method for neural networks has been imple-
mented in NNV [53] to verify safety properties of 
NNCS. The star set method can deal with different 
activation functions, such as ReLU, Satlin, Sigmoid, 
and Tanh, as well as different types of dynamics, 
i.e., linear or nonlinear in discrete or continuous 
time domains. The star set method can perform 
exact and complete analysis of NNCS with linear 
discrete dynamical plants and neural network 
controllers with ReLU/Satlin activation functions. 
The extended star set method has successfully 
verified safety properties of advanced emergency 
braking systems (AEBSs) and adaptive cruise 
control systems (ACCSs), in which the size of the 

neural network controller ranges from fifty to two 
hundreds neurons.

A summary of recent verification methods is 
given in Table 1, which focuses on reachability 
methods that can provide finite time-horizon guaran-
tees, although there also exist approaches based on 
barrier certificates (a “continuous” form of the clas-
sical inductive invariance proof rule) that may pro-
vide infinite time-horizon guarantees [56]. Although 
verification for NNCS provides sound guarantees for 
safety, it is usually computationally expensive and 
suffers from scalability challenges. Importantly, due 
to scalability limitations, current state-of-art verifica-
tion techniques cannot deal with NNCS with percep-
tion components. In this case, falsification approach 
plays an important role since it is more scalable 
and applicable than the verification approaches. 
Particularly, in [57], a compositional falsification 
framework for CPS with ML components has been 
developed. In this framework, a temporal logic fal-
sifier cooperates efficiently with an ML analyzer to 
find falsifying executions of the system. The effec-
tiveness of the proposed framework was shown via 
the falsification of AEBS.

Challenges and future directions
Scalability Versus conservativeness: Scalability is 

still a major challenge for most existing verification 
techniques. It has been shown that the verification 
time using exact analysis increases exponentially 
[10], [14]. Particularly, besides the size of the net-
work, the input set is an important factor affecting 
the verification time of the exact analysis method. 
Generally, a large network or a large input set 
requires more verification time. To improve scala-
bility, a large body of research in neural network 
verification relies on over-approximation methods. 
Some recent approaches [58], [59] are optimistic 

 
Table 1. Reachability and bounded-model checking approaches for NNCS verification. 
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about the scalability of their methods. However, 
it has been shown that these methods only can 
deal with a small input set due to the explosion 
of over-approximation error in the analysis, which 
leads to conservative reachable sets [14]. In the 
future, we believe that new hybrid techniques that 
can combine the advantages of exact and over- 
approximate analyses are needed to improve both 
scalability and conservativeness in neural network 
verification.

Formal specifications and compositional verifi-
cation: While a large body of research focuses on 
verifying neural networks and NNCS, fewer works 
investigate specification formalization for such sys-
tems [60]–[62]. For neural network verification, 
most current methods investigate safety and robust-
ness properties, which can be specified as input to 
output relations of neural networks as illustrated in 
Figure 1 [60], [62]. For NNCS verification, existing 
approaches deal with safety specifications defined 
as predicates over the states of the plant model. In 
the real-world, learning-enabled CPS are complex in 
which several LECs, such as perception components 
and neural network controllers, interact with each 
other and the physical world, such as between a 
physical plant and its environment.

Defining meaningful system-level specifications 
for the whole system is relatively straightforward 
(such as collision avoidance), but the implications 
and constraints such system-level specifications 
place on LECs, especially those for perception, is 

nontrivial and needs to be investigated deeply. New 
specification languages for learning-enabled CPS are 
crucial to formally define the behavior of the systems 
and their subcomponents, and equally important, is 
defining libraries of specifications for meaningful 
perception problems, such as classification, seman-
tic segmentation, and object detection/localization. 
One promising direction is to utilize hyperproper-
ties for specifying robustness to adversarial pertur-
bations [60], [63]. A further challenge, particularly 
related to perception, is not only in defining specifi-
cations, but in evaluating specifications with respect 
to meaningful environmental scenarios and data. 
This challenge is fundamentally different than the 
typical approach for verification of closed-loop sys-
tems, where a plant model generates new inputs for 
a controller, and instead requires verification with 
respect to prerecorded environmental data (such as 
images/video) or generation thereof. This is partly 
because it is unreasonable to expect formal mod-
els for the environment in which an NNCS operates, 
and at best, generative models such as GANs and 
realistic simulators may exist, beyond prerecorded 
real-world data. Altogether, it is unclear under what 
circumstances compositional specification and ver-
ification for learning-enabled CPS are achievable, 
such as by verifying individual LECs and attempting 
to compose guarantees of individual components 
into system-level guarantees [64].

Runtime verification for NNCS: Existing verifica-
tion techniques for NNCS primarily operate offline 

Figure 2. Example output reachable set computation for a 
neural network with three inputs, two outputs, and seven hidden 
layers with seven neurons each, where all activation functions 
are ReLUs and all parameters of the network (weights, biases) 
are chosen randomly. The input set I x x x= ≤{ ∈ }∞

| , 1 3�  is a 
cube and convex, while the output set shown is nonconvex, 
represented as the union of the different colored polygons.
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and are to be performed during the design-time of 
a system. In practice, it is useful to have techniques 
that can monitor, if not verify, NNCS specifications 
online. Based on the online verification informa-
tion, a system can perform some intelligent actions 
to avoid upcoming difficult or catastrophic circum-
stances, such as hitting an obstacle or colliding with 
another system, for instance, with Simplex architec-
ture approaches [65].

Robust and safe learning: All techniques surveyed 
in this article deal with an existing network or NNCS. 
In the future, new learning methods that integrate 
verification techniques in the training process to 
enhance the robustness of a network or the safety of 
an NNCS are essential for applying neural networks 
in safety-critical applications, such as in recent 
approaches for safe reinforcement learning.

Benchmarking and standardization: A major lim-
iting factor in the development of this area is a lack 
of standardization for formal models and specifica-
tions. There are several ongoing initiatives that aim 
to address this shortcoming to enable easier, fairer, 
and more scientific comparisons between the exist-
ing verification methods, as well as future ones. Due 
to this lack of standardization, this article does not 
make specific claims relating to which methods are 
most appropriate or scalable, as such answers are 
not yet known. For the open-loop verification prob-
lem (the “Verification of neural networks” section), 
the verification of neural networks (VNNs) workshop 
hosted the first competition on neural network veri-
fication (VNN-COMP) in 2020.2 For the closed-loop 
verification problem (e.g., for NNCS as in the “Ver-
ification and fasification of neural network control 
systems” section), the Applied Verification of Contin-
uous and Hybrid Systems (ARCH) workshop hosted 
the first AINNCS category verification competition 
in 2019 [66]. Other efforts, such as standardization 
of models [e.g., in open neural network exchange 
(ONNX)3], specifications, etc., are emerging, such 
as through the usage of HyST hybrid automata for 
ARCH-COMP [67], and the development of the VNN-
LIB,4 an effort like that of SMT-LIB [68] for satisfiabil-
ity and SMT problems.

This article has surveyed recent approaches 
for verifying ML components, specifically neural 
networks, that are crucial to enabling autonomy 

2 https://sites.google.com/view/vnn20/
3 https://onnx.ai/
4 http://www.vnnlib.org/

in CPS, but that suffer from well-known robustness 
problems. Numerous avenues for future work exist, 
ranging from runtime verification and assurance 
approaches to assure autonomy during system oper-
ation, to expanding the types of LECs beyond feed-
forward neural networks for which most existing 
verification approaches target.� 
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