
24

Autonomous Systems Design

2168-2364/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Editor’s notes:
Neural network control systems are often at the heart of autonomous
systems. The authors classify existing verification methods for these
systems and advocate the necessity of integrating verification techniques
in the training process to enhance robustness.

—Selma Saidi, TU Dortmund

 Artificial intelligence (AI) is in a renais-
sance, and AI methods, such as machine learning
(ML), are now at a level of accuracy and performance
to be competitive or better than humans for many
tasks. Deep neural networks (DNNs), in particular,
are increasingly effective at recognition and classifi-
cation tasks. For instance, much of the sensing, esti-
mation, and fusion of data that enables applications
such as autonomous driving [1], aircraft collision
avoidance [2], and other autonomous cyber–phys-
ical systems (CPSs) [3] increasingly relies on DNNs
and related ML techniques. However, this progress
comes at a significant risk when these methods
are deployed in operational safety-critical systems,
especially those without direct human supervision.
Notably, it has been observed that neural networks

Verification Approaches
for Learning-Enabled
Autonomous Cyber–
Physical Systems
Hoang-Dung Tran
University of Nebraska–Lincoln, Lincoln, NE, USA

Weiming Xiang
Augusta University, Augusta, GA, USA

can react in unexpected
and incorrect ways to
even slight perturba-
tions of their inputs [4].
Therefore, there is a need
for methods beyond
testing [5] that can pro-
vide formal guarantees

about the behavioral properties and specifications
of autonomous CPS with learning-enabled compo-
nents (LECs), especially for the purpose of safety
assurance [6]. There are two main streams of veri-
fication for intelligent systems with ML components.
The first one focuses on the correctness of only the
learning components while the second one aims
at proving the correctness of the whole system in
which the learning-based component interacts with
the physical dynamics of the system. As one of the
most important and prevalent AI/ML techniques, this
article specifically surveys the current state-of-the-art
for safety verification of autonomous CPS with neu-
ral network controllers.

Artificial neural networks are used in systems that
introduce ML components to resolve complex prob-
lems. This can be attributed to the impressive ability
of neural networks to approximate complex func-
tions as shown by the universal approximation the-
orem [7]. Neural networks are trained over a finite
amount of input and output data, and are expected

Taylor T. Johnson
Vanderbilt University, Nashville, TN, USA

Digital Object Identifier 10.1109/MDAT.2020.3015712
Date of publication: 12 August 2020; date of current version:
9 February 2022.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

25January/February 2022

to generalize the said data and produce desirable
outputs for the given inputs and even for previously
unseen inputs. The data-driven nature and lack of
efficient methods for analysis of neural networks
leads to, in most cases, the treatment of neural net-
works as black boxes with no assurance in safety.
However, due to the rapid development AI-inspired
applications, neural networks have recently been
deployed in several safety-critical systems, such as
autonomous systems [1], [3], and aircraft collision
avoidance procedures [2]. Regrettably, it has been
observed that neural networks can react in unex-
pected and incorrect ways to even slight perturba-
tions of their inputs [4]. Thus, methods are needed
that can provide formal guarantees about the behav-
ioral properties of neural networks, especially for the
purpose of safety assurance [6].1

Verification of neural networks
Verifying neural networks is a difficult problem,

and it has been demonstrated that validating even
simple properties about their behavior is NP-complete
[10]. The intuition of many approaches is shown in
Figure 1. The difficulties encountered in verification
mainly arise from the presence of activation functions
and complex structures (i.e., an interconnected group
of nodes, inspired by biological neurons) of neural
networks. Moreover, neural networks are large-scale,
nonlinear, nonconvex, and often incomprehensible
to humans so that traditional verification tools are
not applicable for neural networks. The action of a

neuron is described by the activation function in the

form of y f w xi ijj

n
j i= +











=
∑ 1

θ , where xj is the j  2525th

input of the i th neuron, wij is the weight from the j th
input to the i th neuron, θi is called the bias of the ith
neuron, yi is the output of the ith neuron, and f (.) is
the activation function. Typically, the activation func-
tion is either the rectified linear unit (ReLU), logistic
sigmoid, hyperbolic tangent, the exponential linear
unit, or another linear function. In general, existing
methods for neural network verification can be cat-
egorized into geometric (reachability) methods,
mixed-integer linear programming (MILP) methods,
satisfiability (SAT)-based and SAT modulo theory
(SMT)-based methods, optimization-based methods,
and others.

1 This article summarizes an extended survey of work in this area [8]. A related survey
in the area is [9]. Source code for many of the methods described are available in
our NNV tool (https://github. com/verivital/nnv), and other methods corresponding to
[9] are also available (https://github.com/sisl/NeuralVerification.jl/).

Geometric and reachability methods
To circumvent the difficulties brought by the

nonlinearities present in the neural networks, many
recent results focus on activation functions of the form
f (x) = max(0, x), known as ReLUs. Taking advantage of
the piecewise linear feature of ReLUs and considering
the input as polyhedra or special classes of polyhedra,
such as zonotopes or hyper-rectangles, the verification
process can be turned into a sequence of operations
on polyhedra. For instance, in [11], the computation
process involves standard polytope operations, such
as intersection and projection, and all of these can be
computed by employing sophisticated computational
geometry tools, such as MPT3 [12]. The essence of the
approach is to be able to obtain an exact output set with
respect to the input set. However, the number of poly-
topes involved in the computation process increases
exponentially with the number of neurons in its worst
case performance which makes the method not scala-
ble to neural networks with a large number of neurons.
Within the polyhedra computation framework, further
developments have been made in the recent tool NNV
[13]–[17] by using star sets, an efficient representation
for convex sets, to enhance the scalability with respect
to polyhedral operations. Due to the parallelizability of
the approach, parallel computing techniques can be
employed to speed up the computation to some extent.

In the framework of zonotopes, a verification
engine for ReLU neural networks called AI2 was pro-
posed in [18]. In this approach, perturbed inputs and
safety specifications are abstracted as zonotopes,
and reasoning about their behaviors use operations
over zonotopes. The framework AI2 is capable of han-
dling neural networks of size up to 50,000 neurons
and, in particular, their approach has had success
dealing with convolutional neural networks (CNNs).
Figure 2 shows a representative reachability com-
putation. The star set approach within NNV has also
recently been extended to CNNs using an extension of
star sets to the computer vision domain called Imag-
eStars [15], applied to large classification networks
such as VGG16 and VGG19 that have tens-to-hundreds
of millions of parameters [19]. Another special class
of polyhedra that are called interval sets or hyper-rec-
tangles is also considered for verification problems.
These interval-based methods perform reachability
analysis as the propagation of interval sets across hid-
den layers and eventually derive the output intervals.
Specification-guided methods have been developed
to provide an adaptive partitioning method for the

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

https://github.com/verivital/nnv
https://github.com/verivital/nnv
https://github.com/sisl/NeuralVerification.jl/

26 IEEE Design&Test

Autonomous Systems Design

input space [20]. By making use of the information
of specification, unnecessary partitioning can be
avoided so that the computational complexity can
be reduced significantly. In [21], an interval symbolic
method is developed to compute rigorous bounds for
outputs of neural networks. Their approach is easily
parallelizable and makes use of symbolic interval
analysis to minimize overestimation (conservative-
ness). The authors implement their approach as part
of ReluVal, a system for checking the security proper-
ties of ReLU-based neural networks.

MILP methods
The use of binary variables to encode piecewise

linear functions is standard in optimization [22]. In
[23], the constraints of ReLU functions are encoded
as an MILP. Combining output specifications that are
expressed in terms of linear programming (LP), the
verification problem for output set eventually turns
to the feasibility problem of MILP. For layer i, the
MILP encoding is given as

C x W xi j
i

j
i i

j
i

= ≥ +{
−[] [] []1

θ

x W x Mj
i

j
i i

j
i

j
i[] [] [] []

≤ + +
−1

θ δ

x j
i[]
≥ 0,

x M j Lj
i

j
i i[] [] []| | |≤ −() = … }1 1δ , , � (1)

where M is sufficiently large so that it is larger than
the maximum possible output at any node. A simi-
lar MILP problem is formulated in [24], where the
authors conduct a robustness analysis and search
for adversarial examples in ReLU neural networks. It
is well known that MILP is an NP-hard problem and,
Dutta et al. [25] and [26] elucidate significant efforts
for solving MILP problems efficiently to make the
approach scalable. Their methods combine MILP
solvers with a local search yielding a more efficient
solver for range estimation problems of ReLU neural
networks than several other approaches. Basically, a
local search is conducted using a gradient search
and then a global search is formulated as MILP.
Instead of finding the global optimum directly, it
performs the search seeking values greater/smaller
than the upper/lower bound obtained in the
preceding local search. This is the primary reason
for the computational complexity reduction. This
MILP-based approach is integrated in a tool called
Sherlock [27]. In [28], an MILP encoding scheme
is used for a class of neural networks whose input

spaces are encoded as binaries. This MILP encoding
has a similar flavor to the other encodings present
in the research literature for nonbinarized networks.
In their framework, since all the inputs are integer
values, the real-valued variables can be rounded so
that they can be safely removed, resulting in a refor-
mulated integer LP (ILP) problem that is smaller
in comparison to the original MILP encoding. With
the ILP encoding, an SAT solver is utilized to reason
about the behavior of a binarized neural network of
hundreds of neurons.

Satisfiability and SMT methods
In [10], an SMT solver called Reluplex is devel-

oped. An algorithm, that stems from the Simplex
algorithm for linear functions, for ReLU functions
is proposed. Due to the piecewise linear feature
of ReLU functions, each node is divided into two
nodes. Thus, in their formulation, each node consists
of a forward-facing and backward-facing node. If the
ReLU semantics are not satisfied, two additional
update functions are given to fix the mismatching
pairs. Thus, the search process is similar to the Sim-
plex algorithm that pivots and updates the basic and
nonbasic variables with the addition of a fixing pro-
cess for ReLU activation pairs. This method is applied
on a DNN implementation of a next-generation air-
borne collision avoidance system for unmanned
aircraft (ACAS-X), which has been used as a bench-
mark for a number of successive works. Scheibler
et al. [29] used bounded model checking (BMC) to
create formulas that are solved using the SMT-solver
iSAT3, which is able to deal with transcendental
functions, such as exp and cos (that exist in various
activation functions) that frequently appear in neu-
ral network controllers and plant models. Although
the verification framework is rigorously developed,
the verification problem suffers scalability barriers
due to the curse of dimensionality and state–space
explosion problems. An approach for finding adver-
sarial inputs using SMT solvers that relies on a layer-
by-layer analysis is presented in [30]. The work
focuses on the robustness of a neural network where
safety is defined in terms of classification invariance
within a small neighborhood of one individual input.
An exhaustive search of the region is conducted by
employing discretization and propagating the analy-
sis layer by layer. In a similar manner, a recent paper,
proposed by Ruan et al. [31], generalizes the local

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

27January/February 2022

robustness criterion into a global notion on a set of
test examples.

An early software tool in this area, called Planet,
was developed based on the MILP verification
approaches [32]. This LP-based framework combine
SAT solving and linear over-approximation of piece-
wise linear functions to verify ReLU neural networks
against convex specifications. Given the output of a
ReLU denoted by d and the input c l u∈ [], , the rela-
tionship between c and d can be approximated by the
linear constraints d d c≥ ≥0, , and d ≥ u ((c–l )/(u–l )).
Based on the LP problem formulation, additional
heuristic algorithms were developed to detect infea-
sibility and imply phase inference faster. Pulina and
Tacchella [33] presented an abstraction-refinement
and SMT-based tool for verifying feed-forward neural
networks. Their scheme is based on encoding the
network into a Boolean satisfaction problem over
linear arithmetic constraints.

Other optimization-based methods
As some of the earliest papers for neural network

verification, in [34] and [35], a piecewise-lineariza-
tion of the nonlinear activation functions is used to
reason about their behavior. In this framework, the
authors replace the activation functions with piece-
wise constant approximations and use the bounded
model checker hybrid satisfiability (HySAT) [36] to
analyze various properties. The authors highlight the
difficulty of scaling this technique and, currently,
are only able to tackle small networks with at most
20 hidden nodes.

In [37], a simulation-based approach was devel-
oped, which used a finite number of simulations/
computations to estimate the reachable set of mul-
tilayer neural networks in a general form. Despite
this success, the approach lacks the ability to resolve
the reachable set computation problem for neural
networks that are large-scale, nonconvex, and non-
linear. Still, simulation-based approaches, like the
one developed in [37], present a plausibly practical
and efficient way of reasoning about neural network
behavior. The critical step in improving simula-
tion-based approaches is bridging the gap between
finitely many simulations and the essentially infinite
number of inputs that exist in the continuity set. A
critical concept that is introduced in the work is
called maximal sensitivity, which measures the max-
imal deviation of outputs for a set of inputs suffer-
ing disturbances in a bounded cell. The output set

of the neural network can be over-approximated
by the union of a finite number of reachtubes com-
puted using a union of individual cells that cover
the input set. Thus, verification of a network can be
done by checking the existence of intersections of
the estimated reachable set and safety regions. This
approach has been extended to allow for the reach-
able set estimation and verification of nonlinear
autoregressive-moving average (NARMA) models in
the form of neural networks [38] as well as closed-
loop system verification with the help of the state-
of-the-art reachability tool for hybrid systems dealing
with the plant dynamics [39].

In a recent result [40], an improved simula-
tion-guided method is developed to reduce compu-
tational complexity. Unnecessary input partitions are
avoided as the corresponding partition behaviors
upon input space are guided by simulations instead
of uniform partition. In particular, it is applicable to
a variety of neural networks regardless of the spe-
cific form of the activation functions. Given a neural
network, there is a tradeoff between the precision of
the reachable set estimation and the number of sim-
ulations used to execute the procedure. In addition,
since the approach executes in a layer-by-layer man-
ner, the approximation error will accumulate as the
number of layers present in the network increases.
In this case, more simulations are required at the
expense of increasing the computational cost. A
novel approach for neural network verification based
on optimization duality has been developed [41]. The
verification problem is posed as an optimization prob-
lem that tries to find the largest violation of a property
related to the output of the network.

Other methods
There exists a rich literature of other methods for

neural network verification [8], [9], but we highlight
a few. A comparison of the verification approaches
mentioned above can be found in [42]. Addition-
ally, the authors present a novel approach for neu-
ral network verification called branch and bound
optimization. This approach adds one more layer
behind the output layer cy – b to represent the linear
property cy > b that we wish to verify. If cy – b > 0,
it means that the property is satisfied, otherwise it is
unsatisfiable. Thus, the verification problem is con-
verted into a computation of the minimum or max-
imum value of the output of the neural network. By
treating the neural network as a nonlinear function,

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

28 IEEE Design&Test

Autonomous Systems Design

model-free optimization methods are utilized to
find optimal solutions. To have a global optimum,
the input space is also discretized into subregions.
This approach is not only applicable to ReLU neu-
ral networks, but the model-free method allows the
approach to be applied to neural networks with
more general activation functions. However, despite
its generalization capabilities, in the model-free
framework, there is no guarantee that the algorithm
will converge to a solution.

Cheng et al. [43] studied the verification of
binarizied neural networks (BNNs). The forward
propagation of input signals is reduced to bit arith-
metic. The authors argue that the verification of
BNNs can be reduced to hardware verification and
represents a more scalable problem than tradi-
tional neural network verification. A randomized
approach for rigorously verifying neural networks
in safety-critical applications has been developed
[44]. In an effort to mitigate challenges related to
the curse of dimensionality, the authors make use
of Monte Carlo methods to estimate the probabil-
ity of neural network failure. However, although
Monte Carlo methods are more efficient than
methods that deterministically search through
hyper-rectangular input spaces, they are proba-
bilistic in nature. The authors further demonstrate
that although the number of samples needed to
guarantee this may be large, it is not as prohibitive
as other methods.

In addition to neural network verification, there
are also results on falsification and testing of neural
networks. Several ideas for integrating semantics

into adversarial learning have been explored,
including a semantic modification space and the
use of more detailed information about the outputs
produced by ML models [45]. In work by Weng et al.
[46], an attack independent robustness metric
against adversarial examples for neural networks is
described. Their approach converts the robustness
analysis into a local Lipschitz constant estimation
problem and uses extreme value theory for efficient
solving. In [47], an automatic test case generator is
presented that leverages real-world changes in driv-
ing conditions like rain, fog, lighting conditions, etc.
The tool, called DeepTest, systematically explores
different parts of the DNN logic by generating test
inputs that maximize the number of activated neu-
rons. An improved version of the tool, called DeepX-
plore, is proposed in [48], which is the first efficient
whitebox testing framework for large-scale deep
learning systems.

Verification and fasification of neural
network control systems

Verification and falsification of feedback neural
network control systems (NNCSs) have become an
emerging research topic recently. Unlike verifica-
tion of a neural network where the specifications
of interest are usually defined as predicates over
the outputs of the network, in NNCS, the specifi-
cation are usually defined based on the states of
the plant controlled by a neural network control-
ler. Notably, the behavior of the whole feedback
control system depends not only on the behavior
of the neural network controller but also the sys-
tem’s physical dynamics which is usually described
in terms of ordinary differential equations (ODEs).
The interaction between the nonlinear neural net-
work controller and the physical dynamics makes
the behavior of the whole system complicated and
difficult to analyze. To overcome this challenge,
several methods have been proposed recently to
verify system-level safety properties of NNCS with
feedforward neural network controllers.

The polyhedron-based approach [11] has been
extended for safety verification of NNCS with linear
and discrete dynamics [49]. Recently, a hybridiza-
tion approach has been proposed in the Verisig tool
[50] that transforms an NNCS to an equivalent non-
linear hybrid system that can be verified using Flow*
[55], a verification tool for nonlinear hybrid sys-
tems. This approach applies for neural network

Figure 1. Illustration of neural network
reachability, where the output reachable set of a
mathematical function F : �n � �m representing the
neural network’s behavior under a set of inputs

()F = ⊆ ¬X Y P is defined and computed in an exact or over-
approximative manner. If ()F = ⊆ ¬X Y P , then
safety property P¬ holds, while if P ∩ ≠ ∅Y /0, then
unsafe states may be reached.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

29January/February 2022

controllers with smooth activation functions, such
as sigmoid and hyperbolic tangent (Tanh). Sound
and complete satisfiability modulo convex (SMC)-
based approaches for formal verification of NNCS
have been developed, in which the closed-loop
NNCS with linear and discrete dynamics is encoded
as monotone SMC formulas that were formally ver-
ified by SMC decision procedures [51]. In [52], a
new abstraction method has been proposed for
NNCS verification in which an “local” Taylor model
over-approximation of neural network controller was
obtained and integrated in Flow* [55] to compute a
tight over-approximation reachable set of NNCS. The
advantage of this method is that it is fast and scala-
ble and more importantly, it is proposed to reduce
significantly over-approximation errors in reachable
set computation process. In [54], a new reachabil-
ity approach based on Bernstein polynomials has
been proposed to verify NNCS with more general of
activation functions. This approach can control the
over-approximation error in the analysis; however,
the cost of being more accurate is increased com-
putation time.

An extension of the star-based reachability anal-
ysis method for neural networks has been imple-
mented in NNV [53] to verify safety properties of
NNCS. The star set method can deal with different
activation functions, such as ReLU, Satlin, Sigmoid,
and Tanh, as well as different types of dynamics,
i.e., linear or nonlinear in discrete or continuous
time domains. The star set method can perform
exact and complete analysis of NNCS with linear
discrete dynamical plants and neural network
controllers with ReLU/Satlin activation functions.
The extended star set method has successfully
verified safety properties of advanced emergency
braking systems (AEBSs) and adaptive cruise
control systems (ACCSs), in which the size of the

neural network controller ranges from fifty to two
hundreds neurons.

A summary of recent verification methods is
given in Table 1, which focuses on reachability
methods that can provide finite time-horizon guaran-
tees, although there also exist approaches based on
barrier certificates (a “continuous” form of the clas-
sical inductive invariance proof rule) that may pro-
vide infinite time-horizon guarantees [56]. Although
verification for NNCS provides sound guarantees for
safety, it is usually computationally expensive and
suffers from scalability challenges. Importantly, due
to scalability limitations, current state-of-art verifica-
tion techniques cannot deal with NNCS with percep-
tion components. In this case, falsification approach
plays an important role since it is more scalable
and applicable than the verification approaches.
Particularly, in [57], a compositional falsification
framework for CPS with ML components has been
developed. In this framework, a temporal logic fal-
sifier cooperates efficiently with an ML analyzer to
find falsifying executions of the system. The effec-
tiveness of the proposed framework was shown via
the falsification of AEBS.

Challenges and future directions
Scalability Versus conservativeness: Scalability is

still a major challenge for most existing verification
techniques. It has been shown that the verification
time using exact analysis increases exponentially
[10], [14]. Particularly, besides the size of the net-
work, the input set is an important factor affecting
the verification time of the exact analysis method.
Generally, a large network or a large input set
requires more verification time. To improve scala-
bility, a large body of research in neural network
verification relies on over-approximation methods.
Some recent approaches [58], [59] are optimistic

 
Table 1. Reachability and bounded-model checking approaches for NNCS verification.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

30 IEEE Design&Test

Autonomous Systems Design

about the scalability of their methods. However,
it has been shown that these methods only can
deal with a small input set due to the explosion
of over-approximation error in the analysis, which
leads to conservative reachable sets [14]. In the
future, we believe that new hybrid techniques that
can combine the advantages of exact and over-
approximate analyses are needed to improve both
scalability and conservativeness in neural network
verification.

Formal specifications and compositional verifi-
cation: While a large body of research focuses on
verifying neural networks and NNCS, fewer works
investigate specification formalization for such sys-
tems [60]–[62]. For neural network verification,
most current methods investigate safety and robust-
ness properties, which can be specified as input to
output relations of neural networks as illustrated in
Figure 1 [60], [62]. For NNCS verification, existing
approaches deal with safety specifications defined
as predicates over the states of the plant model. In
the real-world, learning-enabled CPS are complex in
which several LECs, such as perception components
and neural network controllers, interact with each
other and the physical world, such as between a
physical plant and its environment.

Defining meaningful system-level specifications
for the whole system is relatively straightforward
(such as collision avoidance), but the implications
and constraints such system-level specifications
place on LECs, especially those for perception, is

nontrivial and needs to be investigated deeply. New
specification languages for learning-enabled CPS are
crucial to formally define the behavior of the systems
and their subcomponents, and equally important, is
defining libraries of specifications for meaningful
perception problems, such as classification, seman-
tic segmentation, and object detection/localization.
One promising direction is to utilize hyperproper-
ties for specifying robustness to adversarial pertur-
bations [60], [63]. A further challenge, particularly
related to perception, is not only in defining specifi-
cations, but in evaluating specifications with respect
to meaningful environmental scenarios and data.
This challenge is fundamentally different than the
typical approach for verification of closed-loop sys-
tems, where a plant model generates new inputs for
a controller, and instead requires verification with
respect to prerecorded environmental data (such as
images/video) or generation thereof. This is partly
because it is unreasonable to expect formal mod-
els for the environment in which an NNCS operates,
and at best, generative models such as GANs and
realistic simulators may exist, beyond prerecorded
real-world data. Altogether, it is unclear under what
circumstances compositional specification and ver-
ification for learning-enabled CPS are achievable,
such as by verifying individual LECs and attempting
to compose guarantees of individual components
into system-level guarantees [64].

Runtime verification for NNCS: Existing verifica-
tion techniques for NNCS primarily operate offline

Figure 2. Example output reachable set computation for a
neural network with three inputs, two outputs, and seven hidden
layers with seven neurons each, where all activation functions
are ReLUs and all parameters of the network (weights, biases)
are chosen randomly. The input set I x x x= ≤{ ∈ }∞

| , 1 3� is a
cube and convex, while the output set shown is nonconvex,
represented as the union of the different colored polygons.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

31January/February 2022

and are to be performed during the design-time of
a system. In practice, it is useful to have techniques
that can monitor, if not verify, NNCS specifications
online. Based on the online verification informa-
tion, a system can perform some intelligent actions
to avoid upcoming difficult or catastrophic circum-
stances, such as hitting an obstacle or colliding with
another system, for instance, with Simplex architec-
ture approaches [65].

Robust and safe learning: All techniques surveyed
in this article deal with an existing network or NNCS.
In the future, new learning methods that integrate
verification techniques in the training process to
enhance the robustness of a network or the safety of
an NNCS are essential for applying neural networks
in safety-critical applications, such as in recent
approaches for safe reinforcement learning.

Benchmarking and standardization: A major lim-
iting factor in the development of this area is a lack
of standardization for formal models and specifica-
tions. There are several ongoing initiatives that aim
to address this shortcoming to enable easier, fairer,
and more scientific comparisons between the exist-
ing verification methods, as well as future ones. Due
to this lack of standardization, this article does not
make specific claims relating to which methods are
most appropriate or scalable, as such answers are
not yet known. For the open-loop verification prob-
lem (the “Verification of neural networks” section),
the verification of neural networks (VNNs) workshop
hosted the first competition on neural network veri-
fication (VNN-COMP) in 2020.2 For the closed-loop
verification problem (e.g., for NNCS as in the “Ver-
ification and fasification of neural network control
systems” section), the Applied Verification of Contin-
uous and Hybrid Systems (ARCH) workshop hosted
the first AINNCS category verification competition
in 2019 [66]. Other efforts, such as standardization
of models [e.g., in open neural network exchange
(ONNX)3], specifications, etc., are emerging, such
as through the usage of HyST hybrid automata for
ARCH-COMP [67], and the development of the VNN-
LIB,4 an effort like that of SMT-LIB [68] for satisfiabil-
ity and SMT problems.

This article has surveyed recent approaches
for verifying ML components, specifically neural
networks, that are crucial to enabling autonomy

2 https://sites.google.com/view/vnn20/
3 https://onnx.ai/
4 http://www.vnnlib.org/

in CPS, but that suffer from well-known robustness
problems. Numerous avenues for future work exist,
ranging from runtime verification and assurance
approaches to assure autonomy during system oper-
ation, to expanding the types of LECs beyond feed-
forward neural networks for which most existing
verification approaches target.� 

Acknowledgments
This work was supported in part by the Air Force

Office of Scientific Research (AFOSR) under Con-
tract FA9550-18-1-0122 and in part by the Defense
Advanced Research Projects Agency (DARPA)
under Contract FA8750-18-C-0089. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation thereon. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of AFOSR or DARPA.

 References
	 [1]	 M. Bojarski et al., “End to end learning for self-driving

cars,” 2016, arXiv:1604.07316. [Online]. Available:

http://arxiv.org/abs/1604.07316

	 [2]	 K. D. Julian et al., “Policy compression for aircraft

collision avoidance systems,” in Proc. IEEE/AIAA 35th

Digit. Avionics Syst. Conf. (DASC), Sep. 2016, pp. 1–10.

	 [3]	 K. D. Julian and M. J. Kochenderfer, “Neural network

guidance for UAVs,” in Proc. AIAA Guid., Navigat.,

Control Conf. (GNC), Jan. 2017.

	 [4]	 C. Szegedy et al., “Intriguing properties of neural

networks,” CoRR, vol. abs/1312.6199, pp. 1–10,

Dec. 2013. [Online]. Available: http://arxiv.org/

abs/1312.6199

	 [5]	 J. M. Zhang et al., “Machine learning testing:

Survey, landscapes and horizons,” IEEE Trans.

Softw. Eng., early access, Feb. 2020, doi: 10.1109/

TSE.2019.2962027.

	 [6]	 F. Leofante et al., “Automated verification of neural

networks: Advances, challenges and perspectives,”

May 2018, arXiv:1805.09938. [Online]. Available:

https://arxiv.org/abs/1805.09938

	 [7]	 K. Hornik, M. Stinchcombe, and H. White, “Multilayer

feedforward networks are universal approximators,”

Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

	 [8]	 W. Xiang et al., “Verification for machine learning,

autonomy, and neural networks survey,” CoRR,

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/view/vnn20/
https://onnx.ai/
http://www.vnnlib.org/
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

32 IEEE Design&Test

Autonomous Systems Design

vol. abs/1810.01989, pp. 1–51, Oct. 2018. [Online].

Available: http://arxiv.org/abs/1810.01989

	 [9]	 C. Liu et al., “Algorithms for verifying deep neural

networks,” CoRR, vol. abs/1903.06758, pp. 1–76,

Mar. 2019. [Online]. Available: http://arxiv.org/

abs/1903.06758

	[10]	 G. Katz et al., “Reluplex: An efficient SMT solver for

verifying deep neural networks,” in Proc. Int. Conf.

Comput. Aided Verification. Berlin, Germany:

Springer-Verlag, 2017, pp. 97–117.

	[11]	 W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set

computation and safety verification for neural networks

with ReLU activations,” 2017, arXiv:1712.08163.

[Online]. Available: http://arxiv.org/abs/1712.08163

	[12]	 M. Herceg et al., “Multi-parametric toolbox 3.0,” in

Proc. Eur. Control Conf., Zürich, Switzerland, Jul. 2013,

pp. 502–510. [Online]. Available: http://control.ee.ethz.

ch/?mpt

	[13]	 H.-D. Tran et al., “Parallelizable reachability analysis

algorithms for feed-forward neural networks,” in

Proc. IEEE/ACM 7th Int. Conf. Formal Methods Softw.

Eng. (FormaliSE), May 2019, pp. 51–60.

	[14]	 H.-D. Tran et al., “Star-based reachability analysis of

deep neural networks,” in Proc. 23rd Int. Symp. Formal

Methods (FM), Oct. 2019, pp. 670–686.

	[15]	 H.-D. Tran et al., “Verification of deep convolutional neural

networks using imagestars,” in Proc. 32nd Int. Conf.

Comput.-Aided Verification (CAV), 2020, pp. 18–42.

	[16]	 H.-D. Tran et al., “NNV: The neural network verification

tool for deep neural networks and learning-enabled

cyber-physical systems,” in Proc. 32nd Int. Conf.

Comput.-Aided Verification (CAV), 2020, pp. 3–17.

	[17]	 S. Bak et al., “Improved geometric path enumeration for

verifying ReLU neural networks,” in Proc. 32nd Int. Conf.

Comput.-Aided Verification (CAV), Jul. 2020, pp. 66–96.

	[18]	 T. Gehr et al., “AI2: Safety and robustness certification

of neural networks with abstract interpretation,”

in Proc. IEEE Symp. Secur. Privacy (SP), vol. 39,

May 2018, pp. 3–18.

	[19]	 K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image

recognition,” in Proc. Int. Conf. Learn. Represent., 2015,

pp. 1–14.

	[20]	 W. Xiang, H.-D. Tran, and T. T. Johnson, “Specification-

guided safety verification for feedforward neural

networks,” 2018, arXiv:1812.06161. [Online]. Available:

http://arxiv.org/abs/1812.06161

	[21]	 S. Wang et al., “Formal security analysis of neural

networks using symbolic intervals,” in Proc. 27th

USENIX Secur. Symp. (USENIX Security), 2018,

pp. 1599–1614.

	[22]	 R. J. Vanderbei, Linear Programming: Foundations &

Extensions, 2nd ed. Berlin, Germany: Springer-Verlag,

2001.

	[23]	 A. Lomuscio and L. Maganti, “An approach to

reachability analysis for feed-forward ReLU neural

networks,” CoRR, vol. abs/1706.07351, pp. 1–10,

Jun. 2017. [Online]. Available: http://arxiv.org/

abs/1706.07351

	[24]	 V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating

robustness of neural networks with mixed integer

programming,” 2017, arXiv:1711.07356. [Online].

Available: http://arxiv.org/abs/1711.07356

	[25]	 S. Dutta et al., “Output range analysis for deep neural

networks,” 2017, arXiv:1709.09130. [Online]. Available:

http://arxiv.org/abs/1709.09130

	[26]	 S. Dutta et al., “Output range analysis for deep

feedforward neural networks,” in NASA Formal

Methods, A. Dutle, C. Muñoz, and A. Narkawicz,

Eds. Cham, Switzerland: Springer-Verlag, 2018,

pp. 121–138.

	[27]	 S. Dutta et al., “Sherlock—A tool for verification of

neural network feedback systems: Demo abstract,” in

Proc. 22nd ACM Int. Conf. Hybrid Systems: Comput.

Control, Apr. 2019, pp. 262–263.

	[28]	 N. Narodytska et al., “Verifying properties of binarized

deep neural networks,” 2017, arXiv:1709.06662.

[Online]. Available: http://arxiv.org/abs/1709.06662

	[29]	 K. Scheibler et al., “Towards Verification of Artificial

Neural Networks,” in Proc. MBMV, 2015, pp. 30–40.

	[30]	 X. Huang et al., “Safety verification of deep neural

networks,” CoRR, vol. abs/1610.06940, pp. 1–31,

May 2016. [Online]. Available: http://arxiv.org/

abs/1610.06940

	[31]	 W. Ruan et al., “Global robustness evaluation of deep

neural networks with provable guarantees for the L0

norm,” Apr. 2018, arXiv:1804.05805. [Online]. Available:

https://arxiv.org/abs/1804.05805

	[32]	 R. Ehlers, “Formal verification of piece-wise

linear feed-forward neural networks,” CoRR, vol.

abs/1705.01320, pp. 1–15, May 2017. [Online].

Available: http://arxiv.org/abs/1705.01320

	[33]	 L. Pulina and A. Tacchella, “NeVer: A tool for artificial

neural networks verification,” Ann. Math. Artif. Intell.,

vol. 62, nos. 3–4, pp. 403–425, Jul. 2011.

	[34]	 L. Pulina and A. Tacchella, “An abstraction-refinement

approach to verification of artificial neural networks,” in

Computer Aided Verification, T. Touili, B. Cook, and P.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

33January/February 2022

Jackson, Eds. Berlin, Germany: Springer-Verlag, 2010,

pp. 243–257.

	[35]	 L. Pulina and A. Tacchella, “Challenging SMT solvers

to verify neural networks,” AI Commun., vol. 25, no. 2,

pp. 117–135, 2012.

	[36]	 M. Fränzle and C. Herde, “HySAT: An efficient

proof engine for bounded model checking of hybrid

systems,” Formal Methods Syst. Design, vol. 30, no. 3,

pp. 179–198, Apr. 2007.

	[37]	 W. Xiang, H.-D. Tran, and T. T. Johnson, “Output

reachable set estimation and verification for

multilayer neural networks,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 29, no. 11, pp. 5777–5783,

Nov. 2018.

	[38]	 W. Xiang et al., “Reachable set estimation and

verification for neural network models of nonlinear

dynamic systems,” in Safe, Autonomous and Intelligent

Vehicles. Berlin, Germany: Springer-Verlag, 2019,

pp. 123–144.

	[39]	 W. Xiang and T. T. Johnson, “Reachability analysis and

safety verification for neural network control systems,”

2018, arXiv:1805.09944. [Online]. Available: http://arxiv.

org/abs/1805.09944

	[40]	 W. Xiang et al., “Reachable set estimation for

neural network control systems: A simulation-

guided approach,” IEEE Trans. Neural Netw. Learn.

Syst., early access, May 14, 2020, doi: 10.1109/

TNNLS.2020.2991090.

	[41]	 D. Krishnamurthy et al., “A dual approach to scalable

verification of deep networks,” 2018, arXiv:1803.06567.

[Online]. Available: http://arxiv.org/abs/1803.06567

	[42]	 R. Bunel et al., “A unified view of piecewise linear

neural network verification,” 2017, arXiv:1711.00455.

[Online]. Available: http://arxiv.org/abs/1711.00455

	[43]	 C.-H. Cheng et al., “Verification of binarized neural

networks via inter-neuron factoring,” CoRR, vol.

abs/1710.03107, pp. 1–15, Oct. 2017. [Online].

Available: http://arxiv.org/abs/1710.03107

	[44]	 R. R. Zakrzewski, “Randomized approach to

verification of neural networks,” in Proc. IEEE Int. Joint

Conf. Neural Netw., vol. 4, Jul. 2004, pp. 2819–2824.

	[45]	 T. Dreossi, S. Jha, and S. A. Seshia, “Semantic

adversarial deep learning,” Apr. 2018, arXiv:1804.07045.

[Online]. Available: http://arxiv.org/abs/1804.07045

	[46]	 T.-W. Weng et al., “Evaluating the robustness of neural

networks: An extreme value theory approach,” Jan.

2018, arXiv:1801.10578. [Online]. Available: http://arxiv.

org/abs/1801.10578

	[47]	 Y. Tian et al., “DeepTest: Automated testing of deep-

neural-network-driven autonomous cars,” CoRR,

vol. abs/1708.08559, pp. 1–12, Aug. 2017. [Online].

Available: http://arxiv.org/abs/1708.08559

	[48]	 K. Pei et al., “DeepXplore: Automated whitebox

testing of deep learning systems,” CoRR, vol.

abs/1705.06640, pp. 1–18, May 2017. [Online].

Available: http://arxiv.org/abs/1705.06640

	[49]	 W. Xiang et al., “Reachable set estimation and safety

verification for piecewise linear systems with neural

network controllers,” in Proc. Annu. Amer. Control Conf.

(ACC), Jun. 2018, pp. 1574–1579.

	[50]	 R. Ivanov et al., “Verisig: Verifying safety properties

of hybrid systems with neural network controllers,” in

Proc. 22nd ACM Int. Conf. Hybrid Systems: Comput.

Control, Apr. 2019, pp. 169–178.

	[51]	 X. Sun, H. Khedr, and Y. Shoukry, “Formal verification

of neural network controlled autonomous systems,”

in Proc. 22nd ACM Int. Conf. Hybrid Syst. Comput.

Control, Apr. 2019, pp. 147–156.

	[52]	 S. Dutta, X. Chen, and S. Sankaranarayanan,

“Reachability analysis for neural feedback systems

using regressive polynomial rule inference,” in Proc.

22nd ACM Int. Conf. Hybrid Syst. Comput. Control,

Apr. 2019, pp. 157–168.

	[53]	 H.-D. Tran et al., “Safety verification of cyber-physical

systems with reinforcement learning control,” in Proc.

ACM SIGBED Int. Conf. Embedded Softw. (EMSOFT),

Oct. 2019, Art. no. 105.

	[54]	 C. Huang et al., “ReachNN: Reachability analysis

of neural-network controlled systems,” ACM Trans.

Embedded Comput. Syst., vol. 18, no. 5s, pp. 1–22,

Oct. 2019.

	[55]	 X. Chen, E. Ábrahám, and S. Sankaranarayanan,

“Flow*: An analyzer for non-linear hybrid systems,” in

Proc. Int. Conf. Comput. Aided Verification, 2013,

pp. 258–263.

	[56]	 C. E. Tuncali et al., “Reasoning about safety of

learning-enabled components in autonomous cyber-

physical systems,” in Proc. 55th ACM/ESDA/IEEE

Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

	[57]	 T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional

falsification of cyber-physical systems with machine

learning components,” in Proc. NASA Formal Methods

Symp, 2017, pp. 357–372.

	[58]	 G. Singh et al., “An abstract domain for certifying

neural networks,” Proc. ACM Program. Lang., vol. 3,

no. POPL, pp. 1–30, Jan. 2019.

	[59]	 G. Singh et al., “Fast and effective robustness

certification,” in Proc. Adv. Neural Inf. Process. Syst.,

2018, pp. 10802–10813.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

34 IEEE Design&Test

Autonomous Systems Design

	[60]	 S. A. Seshia et al., “Formal specification for deep

neural networks,” in Proc. Int. Symp. Autom. Technol.

Verification Anal., 2018, pp. 20–34.

	[61]	 D. J. Fremont et al., “Scenic: A language for scenario

specification and scene generation,” in Proc. 40th ACM

SIGPLAN Conf. Program. Lang. Design Implement.,

2019, pp. 63–78.

	[62]	 T. Dreossi et al., “A formalization of robustness for

deep neural networks,” 2019, arXiv:1903.10033.

[Online]. Available: http://arxiv.org/abs/1903.10033

	[63]	 L. V. Nguyen et al., “Hyperproperties of real-valued

signals,” in Proc. 15th ACM-IEEE Int. Conf. Formal

Methods Models for Syst. Design (MEMOCODE),

Sep. 2017, Art. no. 104113.

	[64]	 S. A. Seshia, “Compositional verification without

compositional specification for learning-based

systems,” Dept. EECS, Univ. California, Berkeley,

Berkeley, CA, USA, Tech. Rep. UCB/EECS-2017-164,

2017, pp. 1–8.

	[65]	 S. Bak et al., “Real-time reachability for verified

simplex design,” in Proc. IEEE Real-Time Syst. Symp.,

Dec. 2014, pp. 138–148.

	[66]	 D. M. Lopez et al., “ARCH-COMP19 category report:

Artificial intelligence and neural network control

systems (AINNCS) for continuous and hybrid systems

plants,” in Proc. 6th Int. Nat. Workshop Appl. Verification

Continuous Hybrid Syst. (ARCH EPiC), vol. 61,

G. Frehse and M. Althoff, Eds. Manchester, U.K.:

EasyChair, Apr. 2019, pp. 103–119.

	[67]	 S. Bak, S. Bogomolov, and T. T. Johnson, “HYST: A

source transformation and translation tool for hybrid

automaton models,” in Proc. 18th Int. Conf. Hybrid

Syst., Comput. Control (HSCC), 2015, Art. no. 128133.

	[68]	 C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB

standard—Version 2.0,” in Proc. 8th Int. Workshop

Satisfiability Modulo Theories (SMT), Edinburgh,

U.K., 2010, pp. 1–85.

Hoang-Dung Tran is currently an Assistant
Professor with the Department of Computer Science
and Engineering, University of Nebraska, Lincoln, NE,
USA. His research interests include in formal verification
of autonomous cyber–physical systems with learning-
enabled components, safe artificial intelligence, hybrid,

and switching systems, distributed control systems,
robust control, stability analysis of nonlinear control
systems, and networked control systems. Tran has a
PhD in computer science from Vanderbilt University,
Nashville, TN, USA.

Weiming Xiang is an Assistant Professor with
the School of Computer and Cyber Sciences, Augusta
University, Augusta, GA, USA. His research interests
include developing formal synthesis and verification
techniques and software tools for cyber–physical
systems (CPSs), especially focusing on on formal
methods on safety, security, and reliability of learning-
enabled CPSs. He is also broadly interested in methods
and applications across CPS domains, such as control
synthesis, stability analysis, reachable set computation,
hybrid systems, power and energy, transportation, fuzzy
logic, and neural networks. Xiang has a PhD from
Southwest Jiaotong University, Chengdu, China (2014).
He is a Senior Member of IEEE.

Taylor T. Johnson is an Assistant Professor
of electrical engineering and computer science
with Vanderbilt University, Nashville, TN, USA. His
research interests include developing algorithmic
techniques and software tools to improve the
reliability of cyber–physical systems. Johnson has
an MSc and a PhD in electrical and computer
engineering from the University of Illinois at
Urbana–Champaign, Urbana, IL, USA. He is a Member
of IEEE.

 Direct questions and comments about this article
to Taylor T. Johnson, Department of Electrical and
Computer Science, Vanderbilt University, Nashville,
TN 37212 USA; taylor.johnson@vanderbilt.edu.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 28,2022 at 21:41:30 UTC from IEEE Xplore. Restrictions apply.

