
105

Safety Verification of Cyber-Physical Systems with

Reinforcement Learning Control

HOANG-DUNG TRAN, FEIYANG CAI, MANZANAS LOPEZ DIEGO, PATRICK MUSAU,

TAYLOR T. JOHNSON, and XENOFON KOUTSOUKOS, Vanderbilt University

This paper proposes a new forward reachability analysis approach to verify safety of cyber-physical systems
(CPS) with reinforcement learning controllers. The foundation of our approach lies on two efficient, exact and
over-approximate reachability algorithms for neural network control systems using star sets, which is an ef-
ficient representation of polyhedra. Using these algorithms, we determine the initial conditions for which a
safety-critical system with a neural network controller is safe by incrementally searching a critical initial con-
dition where the safety of the system cannot be established. Our approach produces tight over-approximation
error and it is computationally efficient, which allows the application to practical CPS with learning enable
components (LECs). We implement our approach in NNV, a recent verification tool for neural networks and
neural network control systems, and evaluate its advantages and applicability by verifying safety of a practical
Advanced Emergency Braking System (AEBS) with a reinforcement learning (RL) controller trained using the
deep deterministic policy gradient (DDPG) method. The experimental results show that our new reachability
algorithms are much less conservative than existing polyhedra-based approaches. We successfully determine
the entire region of the initial conditions of the AEBS with the RL controller such that the safety of the system
is guaranteed, while a polyhedra-based approach cannot prove the safety properties of the system.

CCS Concepts: • General and reference → Verification; • Software and its engineering → Formal

methods; • Theory of computation → Timed and hybrid models; • Computing methodologies → Rein-

forcement learning; Neural networks; • Computer systems organization → Robotic autonomy;

Additional Key Words and Phrases: Formal methods, verification, reinforcement learning

ACM Reference format:

Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and Xenofon
Koutsoukos. 2019. Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control. ACM

Trans. Embed. Comput. Syst. 18, 5s, Article 105 (October 2019), 22 pages.
https://doi.org/10.1145/3358230

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019. The material presented in this paper is based upon work supported by the National
Science Foundation (NSF) under grant numbers SHF 1736323 and CNS 1739328, the Air Force Office of Scientific Research
(AFOSR) through contract number FA9550-18-1-0122, and the Defense Advanced Research Projects Agency (DARPA)
through contract number FA8750-18-C-0089. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of AFOSR, DARPA, or NSF.
Authors’ addresses: H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and X. Koutsoukos, Vanderbilt Uni-
versity; emails: trhoangdung@gmail.com, {feiyang.cai, diego.manzanas.lopez, patrick.musau, taylor.johnson, xenofon.
koutsoukos}@vanderbilt.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1539-9087/2019/10-ART105 $15.00
https://doi.org/10.1145/3358230

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

https://doi.org/10.1145/3358230
mailto:permissions@acm.org
https://doi.org/10.1145/3358230

105:2 H.-D. Tran et al.

1 INTRODUCTION

Deep neural networks have become a popular choice in practical applications where the control
tasks are much more complicated than the traditional control problems. Recently, the power of
DNNs has inspired a new generation of intelligent autonomy that makes use of DNNs as learning-
based controllers such as autonomous vehicles [7] and air traffic collision avoidance systems [20].
Although utilizing DNNs for intelligent autonomous application is promising, safety verification of
autonomy containing neural network components is difficult because DNNs usually have complex
characteristics and behavior that are generally unpredictable. Importantly, many pieces of research
have proved that well-trained DNNs may not be robust and behave unsafely with a slight change
in the input [26]. Recent incidents in autonomous driving (e.g., Tesla and Uber) due to the failures
of learning-based components, e.g., misclassifying objects, raises an urgent need for techniques
and tools that can formally verify the safety of neural network control systems before utilizing
them in safety-critical applications.

Safety verification of neural network control systems (NNCS) is a challenging problem because
the behaviors of the systems are difficult to estimate or characterize. To explicitly analyze the safety
of NNCS, we need to calculate the exact or overapproximate reachable set containing all possible
trajectories of the plant that takes the control set from the neural network controller as inputs. The
output set of the plant is feedback to the controller to compute the control set for the next con-
trol step. Therefore, if the error in the reachable set computation is large, it quickly becomes larger
and larger over time which results in too conservative reachable sets that cannot be used for safety
verification. In addition, the scalability and efficiency of the reachable set computation are crucial
for safety verification of control systems with DNN controllers. It is required methods that can
compute the reachable set of NNCS with large neural network controllers with a reasonable com-
putation time and a small over-approximation error. However, calculating an exact or tight, over-
approximate reachable set of a neural network quickly is fundamentally difficult due to the non-
linearity of the network. This challenging problem has not addressed well in the existing literature.

In this paper, we propose a new reachability analysis approach for safety verification of CPS
with neural network controllers using the concept of star set. We particularly focus on the safety
verification of the Advanced Emergency Braking System (AEBS) in an autonomous car to illus-
trate and evaluate our approach. The AEBS is controlled by a neural network controller which
is trained to stop the vehicle appropriately if it discovers an obstacle on the road. To guarantee
safety, it is required that the time-to-collision (TTC) of the car, which is a nonlinear function of
the car’s velocity, acceleration and the distance between the vehicle to the obstacle, is always larger
than a safe threshold defined by the physical characteristics of the vehicle. Our safety verification
approach for AEBS works as follows. First, using CARLA, we perform system identification to
obtain a discrete, linear state-space model of the car. The car model is then validated via system-
atic testing. Second, we train a deep neural network controller to perform the emergency braking
action using reinforcement learning. Third, we compose the neural network controller with the
state-space model to construct a closed-loop Simulink model of the AEBS which is then validated
with CARLA results. Fourth, we perform the reachability analysis of the closed-loop model to ob-
tain the reachable set of the AEBS. Finally, we compute the reachable set of the TTC and use it for
safety verification.

We limit our reachability analysis approach to feed-forward neural network controllers with
ReLU/Saturation activation functions. Our reachability algorithms can compute both exact and
over-approximate reachable sets of the AEBS. Exact reachable set computation is expensive since
the number of the reachable sets increases over time steps. In contrast, the over-approximate reach-
ability scheme is much cheaper as it produces a single reachable set at each time step. Importantly,
by using star sets, our reachability analysis approach can eliminate or reduce significantly the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:3

Fig. 1. Neural network control system (NNCS).

over-approximation errors which is the main reason that makes the obtained reachable sets more
and more conservative over time as shown in the polyhedron approach [29, 35, 36] (and maybe
in some existing methods). Our approach successfully verifies the safety of the AEBS and notably,
determine the entire region of the initial conditions of the AEBS where safety is guaranteed. This
demonstrates the promising applicability of our approach in verifying safety properties of neural
network-based autonomous systems at design time. We note that the polyhedron approach fails
to prove the safety property of the system due to its over-approximation errors explode quickly
over time.

In summary, the main contributions of this study are as follows.

(1) the provision of star-based reachability schemes designed to efficiently compute the
reachable set of an discrete, linear neural network control systems with ReLU activation
function,

(2) an end-to-end design and implementation of these schemes in a MATLAB®toolbox called
NNV [29] which is publicly available for evaluation and comparison,

(3) and a thorough evaluation on the safety verification of the practical automatic emergency
braking system.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

In this paper, we are interested in safety verification of CPS with neural network controllers as
depicted in Figure 1 in which x (k) andy (k) are the state and the output of the plant at the time step
k . The controller is a feedforward neural network (FNN) consisting of an input layer, an output
layer, and multiple hidden layers. Each layer is comprised of neurons that are connected to the
neurons of the preceding layer labeled using weights [18]. The output of the FNN controller, given
a specific input vector is determined by three components: the weight matricesWl,l−1, representing
the weighted connection between neurons of two consecutive layers l − 1 and l , the bias vectors bl

of each layer, and the activation function f applied at each layer. Formally, the output of a neuron
i is defined by:

yi = f (Σn
j=1ωi jx j + bi),

where x j is the jth input of the ith neuron, ωi j is the weight from the jth input to the ith neuron,
bi is the bias of the ith neuron. In this paper, we consider FNN controller with the ReLU activation
functions defined as ReLU (x) =max (0,x).

2.2 Problem Formulation

Problem 1 (Safety Verification of NNCS). Given a CPS with an FNN controller F , and a dis-
crete, linear plant P with the initial states x (0) in an initial set X0, verify whether or not the state
of the plant satisfies a safety property in a bounded time steps kmax . Formally, we want to verify if

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:4 H.-D. Tran et al.

∀x (0) ∈ X0 → д(x (k)) |= S (д(x (k))),∀0 ≤ k ≤ kmax in which д is a nonlinear transformation func-
tion, S is a linear predicate over the transformed state variables д(x (k)) defining the safety require-
ments of the system.

The core challenges in problem 1 are: 1) given the initial set of states of the plant, how can we
efficiently compute the reachable set of the plant over time steps which depends on the control in-
put produced by the FNN controller with nonlinear activation functions, 2) how can we transform
the computed reachable set with a nonlinear transformation function to verify the safety prop-
erty of the system. It is worth to emphasize that a small over-approximation error and timing
efficiency in reachable set computation are two crucial metrics that determine the applica-
bility of reachability analysis methods in safety verification of practical NNCS. Therefore,
safety verification of NNCS requires computationally efficient methods that can compute the exact
or tight over-approximate reachable sets of NNCS in a reasonable time. However, computing the
exact or tight over-approximate reachable sets of an FNN is difficult and usually time-consuming.
In addition, simple utilization of the control set from the controller to compute the reachable set of
the plant may produce a very coarse reachable set which is useless in safety verification. Overcome
the challenges in problem 1 is a fundamental step to tackle the following important problem.

Problem 2 (Safety-critical Initial Condition of NNCS). Given a CPS in problem 1 with

the initial states x (0) ∈ X0, determine the initial condition of the ith state x i (0) that “may” make
the system unsafe while keeping the initial conditions of other states unchanged. We call this initial
condition is a “safety-critical initial condition” of the system and assume that the initial conditions of
all states are independent.

Problem 2 is even harder than problem 1 since it is almost impossible to perform backward
analysis of CPS with neural network controllers to determine an unsafe initial condition (backward
analysis is generally intractable in this case). In the following, we first present our core reachability
algorithm for neural network control systems (NNCS). Then, we discuss handling the nonlinear
transformation on the computed reachable set for checking the safety of the system, i.e., Problem 1
as well as searching safety-critical initial condition, i.e., Problem 2.

3 REACHABILITY ANALYSIS OF NEURAL NETWORK CONTROL SYSTEMS

The reachability analysis of a NNCS depicted in Figure 1 is done as follows. First, from the initial
set of states X0 of the plant P , the controller F takes the output set of the plant Y0 as an input to
compute the control setU = F (Y0). Note that Y0 is an affine mapping of the initial set X0 with the
output matrix C , i.e., Y0 = CX0. The control set U is then applied to the plant to compute the set
of the next state X1 = AX0 + BU . This routine is performed iteratively to obtain the reachable set
of the plant X0,X1, . . .Xk , 0 ≤ k ≤ kmax . To obtain tight reachable sets of the NNCS, we compute
the exact control set U given the output set Y . Also, we compute the exact reachable set of state
Xk given its initial set Xk−1 and the corresponding control set Uk−1.

3.1 Generalized Star Set

Although computing the exact control set of a FNN controller can be done by the polyhedron
approach [29], it is computationally inefficient and not scalable. In addition, the polyhedron-based
approach produces a conservative reachable set of the plant because it cannot take advantage of
the relationship betweenUk and Xk , i.e.,Uk = F (Yk) = F (CXk). To overcome these challenges, we
propose a new reachability analysis approach for NNCS using the concept of star set [4, 5, 30,
31] which is very efficient in affine mapping operation, e.g., Yk = CXk and more importantly, it
preserves the relationship between Uk and Xk which is crucial to obtain an exact reachable set of
the plant. The definition of a star set and its essential properties are given in the following.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:5

Definition 3.1 (Generalized Star Set [4]). A generalized star set (or simply star) Θ is a tuple 〈c,V , P〉
where c ∈ Rn is the center, V = {v1,v2, . . . ,vm } is a set of m vectors in Rn called basis vectors,
and P : Rm → {�,⊥} is a predicate. The basis vectors are arranged to form the star’s n ×m basis
matrix. The set of states represented by the star is given as:

�Θ� = {x | x = c + Σm
i=1 (αivi) such that P (α1, . . . ,αm) = �}. (1)

Sometimes we will refer to both the tuple Θ and the set of states �Θ� as Θ. We also restrict the
predicate to be a conjunction of linear constraints, P (α) � Cα ≤ d where, for p linear constraints,
C ∈ Rp×m , α is the vector ofm-variables, i.e., α = [α1, . . . ,αm]T , and d ∈ Rp×1. A star is an empty
set if and only if P (α) is empty.

Proposition 3.2 (Affine Mapping of a Star). Given a star set Θ = 〈c,V , P〉, an affine mapping
of the star Θ with the affine mapping matrix W and offset vector b defined by Θ̄ = {y | y =Wx +
b, x ∈ Θ} is another star with the following characteristics.

Θ̄ = 〈c̄, V̄ , P̄〉, c̄ =Wc + b, v̄ = {Wv1,Wv2, . . . ,Wvm }, P̄ ≡ P .

Proposition 3.3 (Star and Half-space Intersection). The intersection of a star Θ � 〈c,V , P〉
and a half-spaceH � {x | Hx ≤ д} is another star with following characteristics.

Θ̄ = Θ ∩H = 〈c̄, V̄ , P̄〉, c̄ = c, V̄ = V , P̄ = P ∧ P ′,
P ′(α) � (H ×Vm)α ≤ д − H × c,Vm = [v1 v2 · · ·vm].

We can see that, a star set does not change its predicate over affine mapping operations, and it
preserves the center and basis vectors in the intersection with a half-space.

3.2 Exact Reachability Analysis of the Neural Network Controller

The first step in our reachability analysis is to compute the exact control set Uk = F (CXk)
using star-set approach [30]. This computation is done layer-by-layer in which the output set
of the previous layer is the input set of the next layer. Given a star input set Θ̄ = 〈c̄, V̄ , P̄〉, the
reachable set of a layer L can be obtained precisely in two steps. First, an affine map Θ of the
input set can be derived quickly with the weight matrix W and bias vector b of the layer, i.e.,
Θ = 〈c =Wc̄ + b,V =WV̄ , P ≡ P̄〉. After calculating the affine map of the input set, the reachable
set of the layer RL is obtained by applying the ReLU activation function on the affine-mapped
set, i.e., RL = ReLU (Θ). Similar to [29], this second step is done by executing a sequence of
stepReLU operations RL = ReLUn (ReLUn−1 (· · ·ReLU1 (Θ))). The stepReLU operation on the ith

neuron, i.e., ReLUi (·), works as follows. First, the input star set Θ is decomposed into two subsets
Θ1 = Θ ∧ xi ≥ 0 and Θ2 = Θ ∧ xi < 0. Note that from Proposition 3.3, Θ1 and Θ2 are also stars. Let
assume that Θ1 = 〈c,V , P1〉 and Θ2 = 〈c,V , P2〉. Since the later set has xi < 0, applying the ReLU
activation function on the element xi of the vector x = [x1 · · · xi xi+1 · · · xn]T ∈ Θ2 will lead to
the new vector x ′ = [x1 x2 · · · 0 xi+1 · · · xn]T . This procedure is equivalent to mapping Θ2 by the
mapping matrix M = [e1 e2 · · · ei−1 0 ei+1 · · · en]. Also, applying the ReLU activation function on
the element xi of the vector x ∈ Θ1 does not change the set since we have xi ≥ 0. Consequently,
the result of the stepReLU operation on input set Θ at the ith neuron is a union of two star sets
ReLUi (Θ) = 〈c,V , P1〉 ∪ 〈Mc,MV , P2〉. A concrete example of the first stepReLU operation on a
layer with two neurons is depicted in Figure 2.

To reduce the computation cost, we can minimize the number of stepReLU operations. This is
because if we know that xi is always larger than zero, then we have ReLUi (Θ) = Θ. In other words,
we do not need to execute the stepReLU operation on the ith neuron. Therefore, to minimize the
number of stepReLU operations and overall computation time, we first determine the ranges of all

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:6 H.-D. Tran et al.

Fig. 2. An example of a stepReLU operation on a layer with two neurons.

states in the input set which can be done efficiently by solving n-linear programming problems.
Furthermore, one can see that a star set can be split into two star sets after a stepReLU operation.
Therefore, the exact output set of a layer is a union of stars which can be handled independently.
Based on this observation, the reachability algorithm of an FNN using star set can be designed
efficiently to exploit the power of parallel computing as in the polyhedron-based approach [29].
We emphasize that the exact reachability of an FNN with ReLU activation function can be extended
straightforwardly to deal with saturation activation function.

Although the star set based method [30] is similar to the polyhedron-based approach [29], it is
much more efficient and scalable because star set is very fast in affine mapping which is the most
expensive step in the polyhedron-based approach, especially for a high dimensional set. More
importantly, the computed output set and the input set of the FNN are defined based on the same
set of predicate variables, i.e., α = [α1, . . . ,αm]T . This property is crucial in eliminating the over-
approximation error in computing the reachable set for the plant as addressed in the following.

3.3 Exact Reachability Analysis of the Discrete Linear Plant

As shown in previous subsection, the exact control set Uk = F (CXk) is a union of stars, Uk =

∪L
j=1Θ̃j . Therefore, the exact reachable set of the plant for the next step is also a union of stars,

Xk+1 = AXk + BUk . Interestingly, the state set Xk = 〈c,V , P〉 and the control set Uk are defined
based on a unique predicate variable vector α and for any star in the control set, its predicate con-
tains all linear constraints of the state set Xk as can be seen in Figure 2. This leads to an important
fact that, only a subset of Xk can lead to an individual control set Θ̃j ∈ U and the predicate of this
subset is exactly the predicate of the individual control set. Therefore, the next state set correspond-
ing to the individual control set Θ̃j = 〈c̃ j , Ṽj , P̃j 〉 is X j

k+1 = 〈Ac + Bc̃ j ,AV + BṼj , P̃j 〉. Consequently,

the exact next state set of the plant is Xk+1 = ∪L
j=1X

j

k+1.

3.4 Reachability Algorithm for NNCS

As shown previously, we can compute the exact reachable set of NNCS depicted in Figure 1 by
computing the exact control set and the exact state set of the plant. For a single initial state set, after
one time step, it may produce many other state sets. Therefore, the number of state sets increases
quickly over time which makes the exact analysis time-consuming even using parallel computing.
To handle this state sets explosion, we can obtain a single convex hull of the state sets after every

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:7

ALGORITHM 1: Reachability Algorithm for NNCS

1: % F : neural network controller
2: % A,B,C: plant’s matrices xk+1 = Ax + Bu, yk = Cxk

3: % I : initial set of states of the plant
4: % kmax : number of steps
5: % scheme: reachability analysis scheme, “exact” or “approx”
6: % R: reachable set
7: procedure R = Reach(F ,A,B,C, I ,kmax , scheme)
8: R = cell (1,kmax + 1)
9: R{1, 1} = I

10: for k = 1 : kmax do

11: Xk = R{1,k }, M = lenдth(Xk)
12: for i = 1 : M do

13: X i
k
= Xk (i) = 〈c,V , P〉

14: Uk = F (CX i
k

) = ∪L
j=1Θ̃j = ∪L

j=1〈c̃ j , Ṽj , P̃j 〉
15: Xk+1 = []
16: for j = 1 : L do

17: X
j

k+1
= 〈Ac + Bc̃ j ,AV + BṼj , P̃j 〉

18: Xk+1 = [Xk+1 X
j

k+1
]

19: if scheme == exact then R{1,k + 1} = Xk+1
20: else R{1,k + 1} = IntervalHull (Xk+1)

step and use it for the next step computation. Computing the convex hull for a set of stars is
essentially computing the convex hull of a set of convex polyhedrons which is computationally
expensive. To overcome this challenge, we instead compute the interval hull of a set of stars for
the next step computation which can be done efficiently by solving a set of linear programming
optimization problems. The experimental results show that, by using only the interval hull of
the star state sets, we still can obtain a tight over-approximation of the exact reachable set for
the NNCS and more importantly, the over-approximation error does not explode over time. The
reachability algorithm for a NNCS is summarized in Algorithm 1 in which the user can choose to
compute the exact or the over-approximate reachable sets of the NNCS.

Lemma 3.4. The exact scheme in Algorithm 1 produces the exact reachable sets of the NNCS depicted
in Figure 1.

Proof. The proof can be derived inductively based on the exact computation of the reachable
set of the plant and the neural network controller in every step. �

3.5 Extension to NNCS with Nonlinear Plants

It is interesting to emphasize that the proposed star-based reachability algorithm can be extended
to deal with neural network control systems with nonlinear plants. The core idea of the extension
is that we can use existing hybrid systems reachability methods, such as the zonotope-based reach-
ability algorithm in CORA [2] that we chose to use, to compute the reachable set of a nonlinear
plant between two time steps tk and tk+1. This algorithm first further divides the time between tk
and tk+1 into Np smaller time steps, and then performs a sound linearization-based reachable set
computation for the plant along with Np time steps to obtain a reachable set with Np stars (we
note that a zonotope is also a star). We refer readers to [3] for the technical details of this hybrid
systems reachability approach. The last star in the union is the initial set of states of the plant for

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:8 H.-D. Tran et al.

ALGORITHM 2: Safety Verification for NNCS

Input: R,д,U : Reachable set of the NNCS, transformation function, unsafe region
Output: sa f e = true or sa f e = uncertain

1: procedure sa f e = Verify(R,д,U)
2: kmax = lenдth(R)
3: for k = 1 : kmax do

4: Xk = R{1,k }
5: zk =min(д(xk)), z̄k =max (д(xk)), xk ∈ Xk

6: Z̃k = [zk , z̄k]

7: if Z̃k ∩U = ∅ then sa f e = true
8: else sa f e = uncertain, break

the next time interval [tk+1, tk+2]. This star is also feedback to the neural network controller. Then,
the exact star-based reachability algorithm is invoked to compute the control inputU for the next
control step.

4 VERIFICATION OF NEURAL NETWORK CONTROL SYSTEMS

4.1 Safety Verification

Although safety properties in CPS are often represented as a linear predicate over the system’s
states xk , there are many cases where the safety property is defined as a linear predicate over a
variable zk that is a nonlinear transformation of the system’s states, i.e., zk = д(xk), where д is a
nonlinear function. LetU (zk) � Hzk ≤ h be the unsafe region of a NNCS, then safety verification
of the NNCS, i.e., Problem 1, is equivalent to checking Zk ∩U (zk) = ∅? ∀0 ≤ k ≤ kmax , where
Zk = {zk | zk = д(xk), xk ∈ Xk } is the transformed reachable set of the system by applying д(·) to
it. Since computing the exact transformed reachable set is computationally expensive and may be
even infeasible, we compute an over-approximation of the exact transformed reachable set Z̃k and
use it for safety verification. The system is safe if Z̃k ∩U (zk) = ∅,∀0 ≤ k ≤ kmax . Particularly,
we compute the tightest interval bounding the exact transformed reachable set by solving the
following nonlinear optimization problem:

Z̃k = [zk , z̄k], zk =min(д(xk)), z̄k =max (д(xk)), xk ∈ Xk .

Safety verification of the NNCS is summarized in Algorithm 2, which solves the above nonlinear
optimization problem to obtain the tightest interval of the transformed reachable set and uses it
to verify safety of the system at each time step.

4.2 Characterization of Safe Initial Condition

Safety verification of a NNCS can reason about the safety of the system w.r.t a specific initial
condition. In some cases, we are interested in the upper bound of a particular state x i (0) in the
initial condition where the safety of the system is still guaranteed. For example, if a car detects
an obstacle and applies the brake to stop, it is important to know what is the maximum velocity
of the vehicle such that the braking action can guarantee the safety of the car. To search for that
maximum velocity, we start from the initial condition that the system is safe, then we increase the
upper bound of the speed by some δ , i.e., x i (0) = x i (0) + δ , and check the safety of the system with
the new initial condition. We continue to increase the upper bound until the safety is uncertain.
We can obtain the maximum allowable velocity with the error of [−δ ,δ].

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:9

Fig. 3. Emergency braking system architecture.

Fig. 4. Illustration of emergency braking system.

5 CASE STUDIES

Our approach is implemented in NNV [29, 30], a Matlab toolbox for safety verification of DNNs
and learning-enabled CPS. The proposed approach is evaluated on a practical automatic emergency
braking system (AEBS) and a adaptive cruise control system (ACC) for an autonomous car. The
experiment is done on a computer with following configurations: Intel Core i7-8859H CPU @
2.6GHz × 4 Processor, 32 GiB Memory, Window 10 Pro OS.1

5.1 Advanced Emergency Braking System

The architecture of the AEBS is described in Figure 3 in which the car is equipped with a perception
component to detect automatically the obstacle on the road and a reinforcement learning (RL)
based controller to control the brake of the car.

5.1.1 Scenario of Interest. In our system, we consider the scenario that the host car automati-
cally detects another static vehicle and applies a brake to decelerate and stop to avoid the potential
collision as shown in Figure 4.

The host car starts from rest and accelerates to a random initial velocityv0, which introduces the
uncertainty to the system. Then, the car keeps this velocityv0 till an obstacle is detected at distance
d0 from the perception module and switches to the reinforcement learning braking controller. The
goal of the controller is to stop the car to avoid the collision and also not too far from the obstacle,
which means the car should stop within the safety and close region.

5.1.2 Safety Specification. The safety property of the AEBS is defined based on the concept
of time-to-collision (TTC) [22, 23]. TTC measures the time it wold take to collide if the vehicle
continues traveling based on the current acceleration of ak = uk and velocity vk . Smaller TTC
means a higher collision risk. The safety specification of the AEBS can be written by

(TTCk (dk ,vk ,ak) > τ (vk)) U (k = kmax)

where τ (vk) is the time to stop when applying the full brake for velocityvk , shown in Figure 5, dk

is the current distance from the car to the obstacle, kmax is the maximum number of steps we want
to verify the safety of the system, and U is the until operator. Generally, the safety specification

1All results presented in this paper and their corresponding scripts are available online at https://github.com/verivital/nnv/
releases/tag/emsoft2019.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

https://github.com/verivital/nnv/releases/tag/emsoft2019
https://github.com/verivital/nnv/releases/tag/emsoft2019

105:10 H.-D. Tran et al.

Fig. 5. Obtaining the required number of reachability analysis steps from the full-braking characteristic of

the car at different speeds.

means that the car is safe if it still has enough time for a full braking action, i.e., full braking action
can successfully stop the car before a collision occurs.

Because of the discontinuity caused by the denominator when velocity or acceleration equals
zero, it is more efficient to evaluate the collision risk using the inverse TTC introduced in [6]. The
inverse TTC is proportional to the collision risk: the higher it is, the higher the collision risk is.
The safety specification using the inverse TTC is given below,

(TTC−1
k (dk ,vk ,ak) < τ−1 (vk)) U (k = kmax),

where, the inverse TTC is defined by:

TTC−1
k (dk ,vk ,ak) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vk

dk
for ak = 0

−ak

vk−
√

v2
k
+2ak dk

for v2
k
+ 2akdk ≥ 0 ∧ ak � 0

0 for v2
k
+ 2akdk < 0 ∧ ak � 0.

5.1.3 RL-based Controller. We train the RL-based controller for the host car using Deep De-
terministic Policy Gradient (DDPG) [24], which is a popular reinforcement learning method that
combines the value-based and the policy-based method. There are two parts in this approach in-
cluding actor and critic. Critic uses the off-policy data to learn the Q-function, which evaluates
how good the action a taken is in given state s . The actor can learn the continuous action pol-
icy by using the Q-function. In practice, it is difficult to obtain the exact Q-function and policy
function. Therefore, two neural networks are introduced to solve this problem, which is critic net-
work Q (s,a |θQ) and actor network μ (s |θ μ) with weights θQ and θ μ . Coming back to our braking
system, the reinforcement learning controller consumes the state s , consisting of distance to the
leader vehicle d and host car’s velocity v , and computes the action – brake T .

For a reinforcement learning system, the reward function should be appropriately designed to
achieve the goal. In our case, the task is to stop the car in a safe and close region. Thus, we define
the reward function as

r = −α × I × 1(collision) − [(dt − B) × β + λ] × 1(vt = 0 ∧ dt > B)

where dt and vt indicates the distance to the leader car and velocity at time step t , α , β and λ
are coefficients greater than zero, 1(·) returns a value of 1 if the statement inside is true and 0
otherwise.

The term of the reward function, −α × I × 1(collision) penalizes a collision event based on the
collision impulse I . The other term −[(dt − B) × β + λ] × 1(vt = 0 ∧ dt > B) penalizes a too early

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:11

Table 1. Hyper-parameters for DDPG Algorithm

Actor Critic
Optimizer Adam Adam

Learning rate 10−4 10−3

Target update rate 0.9 0.9
Reply buffer size 105

Reply batch size 32
Discount factor 0.99
Reward function α = 0.01, B = 5, β = 1.6, λ = 20

stop based on B, the final distance to the boundary line between close and far region. During the
braking process (before the car comes to a stop), there is no penalty or reward. Intuitively, this
reward function will guide the car to stop within the close region.

We use CARLA [9] to generate the scenario and to train the reinforcement learning controller.
The time step used in the simulation is Δt = 1/15 s. In the simulations, the vehicle firstly accel-
erates to a velocity of v0, and keeps the speed untill it detects an obstacle at a distance d0. The
d0 and v0 are the initial states of the braking system. To simulate a more realistic scenario, we
introduce some uncertainty to the initial states of the system. The initial velocity of the vehicle is
uniformly sampled between 90 km/h and 100 km/h, and the initial distance depends on the range
of the perception module, which is approximately 100 m. After initial state, the car switches to
the reinforcement learning controller which consists of two neural networks trained with DDPG
algorithm with the hyper-parameters in Table 1 is presented below:

• Actor NN architecture2:

2(State) × 50(ReLU) × 30(ReLU) × 1(SatReLU, Action)

• Critic NN architecture3:
2(State) × 50(ReLU) × 30

1(Action) × 30

}
× 30(ReLU) × 1(Q Value)

We trained the reinforcement learning for 1000 episodes, and the neural network converges, show-
ing an attractive performance. Also, one of the experiment trajectories is plotted in Figure 7. At
the beginning of involving the reinforcement learning controller, the distance is 97.3 m, and the
velocity is 91.98 km/h (= 25.55 m/s). After 128 steps, about 8.53 s, the ego vehicle stops at about
1.88 m far from the obstacle vehicle.

5.1.4 System Identification and Validation. We transfer the braking system from CARLA to
MATLAB & Simulink to perform reachability analysis and safety verification for the system. The
diagram of the Simulink model of the AEBS is shown in Figure 6. For simulation and verifica-
tion, only the actor is needed. The plant of the braking system is described by following discrete
state-space equation {

xk+1 = Axk + Buk

yk = Cxk + Duk

where xk = [dk vk]T is the state vector including the distance dk and the velocity vk of the car at
step k ,uk is the input, which is the acceleration applied to the plant,yk is the output, andA,B,C,D

2SatReLU is the ReLU function with max value 1.
3The empty activation function means no activation is applied.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:12 H.-D. Tran et al.

Fig. 6. Emergency braking system simulink diagram.

Fig. 7. Validation of the Simulink model of AEBS. The Simulink model captures well the behaviors of the

actual AEBS in CARLA.

are the coefficient matrices given below,

A =

[
1 −Δt
0 1

]
, B =

[
0

Δt

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
where Δt = 1/15 is simulation time step.

It is important to emphasize that the input of the plant uk does not match with the output of
the reinforcement learning controller Tk . The uk is the acceleration applied to the car, but the Tk

is the braking force. Thus, a neural network transformation with 80 neurons is trained to bridge
this gap between uk and Tk .

To validate the Simulink model of AEBS, we run experiments in Simulink and CARLA with the
same initial states and compare them as shown in Figure 7. From the plot, we can see that the
Simulink model captures very well the behaviors of the (actual) AEBS in CARLA.

5.1.5 Safety Verification of the AEBS.

Physical constraints for safety verification. To verify the safety of the AEBS, we need to
take into account some essential physical constraints of the system. First, the AEBS system uses

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:13

Fig. 8. Safe initial conditions for full braking action.

Fig. 9. Set of initial conditions that needs to be verified for the AEBS with the RL controller.

a perception component to detect the obstacle. The operating range of the perception component
is from 0 to 100 meters. Therefore, we are going to verify the safety of the AEBS for the distance
(between the car to the obstacle) from 10 to 100 meters (we assume that the car is at least 10 meters
far away from the obstacle). Secondly, we limit the maximum allowable velocity of the car is 35 m/s,
i.e., ≈80 miles per hour which is a usual upper limit of the speed on highways.

Thirdly, we need to know what is a reasonable constraint between initial conditions of the car’s
velocity and its distance to the obstacle such that if we apply a full braking action, the car is safe.
This information is important that we should know before verifying the safety of AEBS because
there are cases when even if we apply the full braking action, the collision still occurs. For example,
the car is too close to the obstacle and is travelling at a high speed. From Figure 5, we approxi-
mate an analytical formula for the full braking time that is τ (v) ≈ v/12.5. When the full braking
action occurs, the car goes a distance ds = 0.5aτ 2 +vτ before stopping, where a is the average
acceleration of the car which is equal to a = Δv/Δt = (0 −v)/τ . Therefore, the average travel dis-
tance of the car after applying a full brake is: ds = 0.5vτ = 0.5v2/12.5 = v2/25. To guarantee the
safety, the initial distance of the car d0 should be larger than this travel distance, i.e., d0 > ds .
Combining the above limitation on the distance dmax = 100 m and the maximum allowable ve-
locity vmax = 35 (m/s), a safe initial condition region for full braking action is depicted in
Figure 8. By partitioning the safe initial condition region of the full braking action, we can derive
the reasonable initial conditions that need to be verified for the safety of the AEBS with
the RL controller as shown in Figure 9. This is because, under the safety aspect, the RL controller
cannot overcome the full-braking action.

Finally, we need to find out what the minimum number of steps that we should at least give a
guarantee about the safety of the system is. We should prove the safety of the system at least τ (v)
seconds in the future where τ (v) is the full braking time w.r.t the velocity v . Therefore, the mini-
mum number of steps that needs to prove the safety is: min(kmax) = τ (v)/Δt . For example, if

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:14 H.-D. Tran et al.

Fig. 10. Reachable sets of the AEBS computed by the polyhedron and the interval approaches become

too conservative are quickly after only 2 time steps while the proposed star methods obtains the exact

or tight over-approximate reachable sets for many time steps. The initial conditions are d0 ∈ [97, 97.5],
v0 ∈ [25.2, 25.5].

v = 25 m/s, we should at least prove the safety of the system until k = kmax = 2/(1/15) = 30 time
steps.

Challenges and drawbacks of the polyhedron [29, 36] and interval [11] approaches. A
main challenge in safety verification of AEBS is how to compute a tight reachable set of the AEBS
model depicted in Figure 6. One can see that the control setU = {ut } applied to the plant is derived
from the transformation component that takes the output set T = {Tt } from the RL controller
and the velocity V = {vt } as the input set. Therefore, to compute the control set U , we need to
compute the output set T of the RL controller and then combine with the velocity set V = {vt }
of the plant to form the input set for the transformation neural network. The problem is how to
efficiently combine these sets to form the exact input set for the transformation neural network.
This problem is unsolvable if we use the polyhedron-based [29, 36] or the interval [11] methods
since the relationship between the output set T of the RL controller and the velocity set V of the
plant cannot be preserved in the computation. This leads to a coarse combination which returns
a coarse input set for the transformation neural network. Consequently, the over-approximation
error is exploded quickly after only 2 time steps as shown in Figure 10 which makes the obtained
reachable sets become too conservative and cannot be used for safety verification.

Minimizing overapproximation while maintaining scalability with star sets. As shown
in Figure 10, our star-based approach is an efficient technique to overcome the main challenges
discussed above. We compute the reachable set for the AEBS system in 50 steps. One can see that
our star-based approach eliminates (in the exact method) or reduces significantly (in the over-
approximation method) the over-approximation errors caused by the polyhedron-based and the
interval approaches. The reachable sets computed from the star-based approach are tight and use-
ful for safety verification of the AEBS.

Error analysis. Since we can compute the exact reachable sets of the system, we can ana-
lyze the overapproximation errors of different approaches. These overapproximation errors are
measured using the following metrics OverApprox − Error =max (|lb − lbexact |, |ub − ubexact |)
which measures that largest distance between the lower- and upper- bounds of an output com-
puted from the overapproximation methods and the exact lower- and upper-bounds computed by
the exact star method. The overapproximation errors of the polyhedron, interval, and the proposed
over-approximate star methods are depicted in Figure 11. One can see that the overapproximation
errors of the polyhedron and the interval methods are increased quickly after only two steps while

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:15

Fig. 11. The Over-approximation errors of the polyhedron and the interval approaches are exploded quickly

after only 2 time steps. These over-approximation errors are reduced siginificantly by the proposed star

method.

Table 2. Reachability Analysis Times (Measured in Seconds) of the Exact and

Over-approximate Star Methods in which N is the Number of Time Steps

Method N = 5 N = 10 N = 20 N = 30 N = 40 N = 50

Exact star 12.47 32.24 162.95 400.13 532.1 831
Over-approximate star 10.07 21.09 42.86 63.98 83.3 104.44
Time improvement 1.24x 1.53x 3.8x 6.25x 6.39x 7.96x

Fig. 12. Number of stars in the reachable sets of the AEBS grows over time with the exact star-based method.

these errors are almost zeros for the first 45 steps and very small in the last five steps in the over-
approximate star method.

Timing performance. The reachability analysis times of two proposed methods are presented
in Table 2. The Table shows that the over-approximation method is faster than the exact method
while still produces tight reachable sets for the system. From the figures, one can see that the
reachable sets computed by the two methods are almost the same. The time improvement of using
the over-approximation method increases as the number of time steps grows. The reason that
makes the over-approximation method faster is, it produces only a single reachable set at every
time step while in the exact method, the number of reachable sets may grow over time as depicted
in Figure 12.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:16 H.-D. Tran et al.

Fig. 13. The inverse TTC over time is smaller than the worst case inverse full braking time τ−1 (max (v)). The

AEBS is safe (for 60 time steps) with the initial conditions d0 ∈ [97, 97.5], v0 ∈ [25.2, 25.5].

Table 3. Safe Initial Conditions for the AEBS with RL Controller

in which d is the Distance Range and vmax is the Maximum

Allowable Velocity Such that the System is Still Safe

d (m) [0, 10] [10, 20] [20, 30] [30, 40] [40, 50]
vmax (m/s) — 4 7 8 10
d (m) [50, 60] [60, 70] [70, 80] [80, 90] [90, 100]
vmax (m/s) 15 19 21 24 26

Checking safety using the computed reachable sets. To verify the safety of the AEBS, we
consider the worst case, i.e., we want to verify if the following constraint is satisfied in a bounded
time,max (TTC−1 (d,a,v)) < τ−1 (max (v)). To do that, we estimate the ranges ofTTC−1 in 60 time
steps (two times larger than the minimum requirementkmax = 30) using the ranges of the distance,
velocity, and acceleration of the car from the computed reachable sets and check if it satisfies the
requirement or not. The result is illustrated in Figure 13 which shows that the inverse TTC is
smaller than the worst case inverse full braking time τ−1 (max (v)). Therefore, the AEBS is safe for
60 time steps in the future.

5.1.6 Safe Initial Conditions of the AEBS. From the physical constraints of the car, we have
derived the set of initial conditions that need to be verified for the AEBS with RL controller as
depicted in Figure 9. It is important to determine in these initial conditions, which regions are
safe for the AEBS with RL controller and which ones are risks. We perform our safety verification
methods on each partition Ii , i = 1, 2, . . . , 9 of the initial conditions to find the safe regions. We
perform the search as follows. We partition the distance range [10, 100] into 9 smaller ranges with
the same width of 10, i.e., di = [10i, 10(i + 1)], 1 ≤ i ≤ 9. For the ith individual distance range, we
search for the maximum velocity vi

max such that the RL controller can guarantee the safety of
the system in kmax = 50 time steps for the initial condition of [di ,vi

max]. The results of vmax are
presented in Table 3. From the information of vmax , we visualize the safe region of the initial
conditions for the AEBS as depicted in Figure 14.

5.2 Adaptive Cruise Control System

The extension of the proposed star-based reachability algorithm is evaluated on the safety verifi-
cation of neural network-based adaptive cruise control systems (ACC). The ACC system consists

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:17

Fig. 14. Safe region of the initial conditions of the AEBS with the RL controller.

of two cars in which the ego car equipped with adaptive cruise control has a radar sensor to mea-
sures the distance to the lead car in the same lane, Dr el , as well as the relative velocity of the lead
car, Vr el . In speed control mode, the ego car travels at a driver-set speed Vset = 30 while in spac-
ing control mode, the ego car maintains a safe distance from the lead car, Dsaf e . Neural network
adaptive cruise controllers with different sizes are trained to replace the existing MPC controller.
The control period is selected as 0.1 seconds. The car’s dynamics are as follows.

ẋlead (t) = vlead (t), v̇lead (t) = γlead ,

γ̇lead (t) = −2γlead (t) + 2alead − μv2
lead (t),

ẋeдo (t) = veдo (t), v̇eдo (t) = γeдo ,

γ̇eдo (t) = −2γeдo (t) + 2aeдo − μv2
eдo (t),

where xlead (xeдo), vlead (veдo) and γlead (γeдo) are the position, velocity and acceleration of the
lead (ego) car respectively, alead (aeдo) is the acceleration control input applied to the lead (ego)
car, and μ = 0.0001 is the friction parameter.

Safety-related scenario. The safety verification scenario of interest is that when the ego is in
the speed control mode and the two cars are running with a safe distance between them, the lead
car driver suddenly de-accelerate with alead = −2 to reduce the speed. We expect that the neural
network controllers will also de-accelerate the ego car to remain a safe distance between two cars.
Formally, the safety specification of the system isDr el = xlead − xeдo ≥ Dsaf e = Ddef ault +Tдap ×
veдo , where Tдap = 1.4 seconds and Ddef ault = 10. We want to check if there is a collision in the
next 5 seconds after the lead car de-accelerate. The initial conditions of the system are: xlead (0) ∈
[90, 110], vlead (0) ∈ [32, 32.2], γlead (0) = γeдo (0) = 0, veдo (0) ∈ [30, 30.2], xeдo ∈ [10, 11].

Verification results. The verification results are presented in Table 4 which shows that the
second controller is the safest controller since it guarantees the safety of the ACC system for the
whole range of the lead car’s initial position. The safety of the system can be observed intuitively
via Figure 15 which shows that the relative distance is larger than the safe distance. Interestingly,
the controllers with a large number of neurons, e.g., the third and the fourth controllers, are not
necessarily the good candidates for keeping the system safe. In many cases, the verification results
for these controllers are uncertain which imply that these controllers may or may not control the
system safely. In these cases, the relative distance reachable set intersects with the safe distance
reachable set. However, we do not know this intersection is due to the over-approximation error
of the related reachable sets or the relative distance is actually smaller than the required safe dis-
tance. Since the safety of the system may be violated in these cases, we further randomly generate
simulation traces of the system to find counter example inputs that make the system unsafe. In-
terestingly, we cannot find counter examples for the system whenever xlead ∈ [70, 110]. However,
when xlead ∈ [65, 70], we can find counter examples of the system for all controllers. Note that in

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:18 H.-D. Tran et al.

Table 4. Verification Results for the ACC System in which VT is the Verification Time and Controller

k × n Means the Controller has k Hidden Layer and n Neuron Per Layer

xlead (0) Controller 1 (3x20) Controller 2 (5x20) Controller 3 (7x20) Controller 4(10x20)

Result VT (sec) Result VT (sec) Result VT (sec) Result VT (sec)

[108, 110] safe 211.84 safe 292.67 safe 398.41 safe 1762

[106, 108] safe 210.16 safe 288.83 safe 393.35 safe 2270.3

[104, 106] safe 211.54 safe 302.31 safe 412.81 safe 2674.5

[102, 104] safe 215.21 safe 292.94 safe 446.47 safe 2863.8

[100, 102] safe 222.87 safe 294.81 safe 440.94 safe 2606

[98, 100] safe 233.02 safe 302.74 safe 491.29 uncertain 2855

[96, 98] safe 237.12 safe 289.87 safe 515.43 uncertain 3249.9

[94, 96] safe 238.46 safe 301.99 uncertain 571.75 uncertain 3851.5

[92, 94] safe 259.46 safe 325.51 uncertain 598.22 uncertain 3220.2

[90, 92] uncertain 265.29 safe 359.92 uncertain 558.65 uncertain 2336.9

Fig. 15. The reachable sets of the ACC system with the second controller (5x20) and xlead (0) ∈ [94, 96].

this case, even the controllers de-accelerates the ego car. It still can not guarantee the safety for
the system.

Timing performance. As depicted in Table 4, the verification time depends on the size of the
controller. A controller with a large number of neurons causes a substantial verification time. Our
approach can prove the safety of the NNACC system with the fourth controller having totally 200
neurons in some cases with reasonable verification times (less than 1 hour). A brief comparison
with recent approaches [19, 27, 28] is given as follows. Verisig takes averagely 1690 seconds (on
their personal computer) to verify a single safety property (corresponding to a single input set)
in 30 time steps of the quadrotor system with 12 state variables and a neural network controller
having 40 neurons while our approach spends averagely 275.68 seconds to verify a single safety
property of the ACC system with 6 state variables and a neural network controller having 100
neurons in 50 time steps. The SMC-based approach can falsify safety property of neural network
control system with fairly large number of neurons in the controller (22 to 182 neurons). How-
ever, in the case that there is no counter example exist, the SMC-based approach usually reaches
timeout (= 1 hour). Its experimental results show that only three controllers (in 17 controllers)
with 22, 32 and 82 neurons are successfully verified. An important factor making our approach
potentially faster and more scalable than the Verisig and SMC-based approaches is, our approach
can efficiently compute the exact reachable set of DNNs on multi-core platforms. Therefore, our

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:19

Table 5. Verification Approaches for NNCS

Approaches Plant Dynamics Discrete/Continuous Activation Function Size of Controller

Polyhedron-based [36] Linear Discrete ReLU ≤ 100 neurons

Verisig [19] Linear, Nonlinear Discrete, Continuous Sigmoid, Tanh ≤ 50 neurons

SMC-based [28] Linear Discrete ReLU ≤ 200 neurons

Sherlock [27] Linear, Nonlinear Discrete, Continuous ReLU ≤ 500 neurons

Star-based Linear, Nonlinear Discrete, Continuous ReLU ≤ 200 neurons

verification time for neural network control system can be reduced significantly by exploiting the
power of parallel computing. The new abstraction-based approach proposed recently in [27] is
promisingly the fastest and the most scalable approach for safety verification of NNCS since it can
compute the reachable set of NNCS with neural network controller of 500 neurons in 50 time steps
with just 1081 seconds.

6 RELATED WORK

Verification, testing and falsification of CPS with learning-enabled components have be-
come an emerging research topic recently. Toward verification for CPS with learning enable com-
ponents, several methods have been proposed recently to verify the safety of feedback neural
network control systems [11, 19, 27, 28, 34, 36]. The early polyhedron-based approach has been
extended for safety verification of neural network controlled systems in [36] in which the plant
is assumed to be linear and discrete. Recently, Verisig [19] proposes an approach that transforms
a neural network controller with sigmoid activation function to an equivalent nonlinear hybrid
system which is then combined with the plant dynamics before utilizing Flow* [8] to verify its
safety properties. Another approach using satisfiability modulo convex (SMC) solver for formal
verification of NNCS has been proposed in [28]. In this context, the closed-loop control system
was encoded as monotone SMC formulas which were formally verified by SMC decision proce-
dures. Impressively, this method is sound and complete with noticing that the plant dynamics is
linear and discrete. Last but not least, a new abstraction method [27] has been proposed for NNCS
verification in which an “local” Taylor model over-approximation of neural network controller
was obtained and integrated into Flow*, a flowpipe constructor using Taylor model, to compute a
tight over-approximation reachable set of NNCS. This method is impressively fast and scalable for
NNCS verification and more importantly, it can reduce over-approximation errors significantly in
reachable set computation process and can deal with relative large input sets. A summary of recent
verification methods is given in Table 5. In the testing context, a simulation-based test generation
framework for autonomous vehicles with machine learning components has been proposed in [33]
to enhance the reliability of autonomous driving systems. In the falsification context, a composi-
tional falsification framework for CPS with machine learning components has been proposed in
[10]. In this framework, a temporal logic falsifier cooperates efficiently with a machine learning
analyzer to find falsifying executions of the system. The effectiveness of the proposed framework
was shown via Automatic Emergency Braking System (AEBS). As a complement approach to veri-
fication of CPS with learning-enabled components, in this paper, we focus on safety verification of
NNCS with ReLU activation function. We mainly focus on the exact and over-approximate analy-
sis for such a system which aims at eliminating or significantly reducing the over-approximation
error in the reachable set computation. We also study an extension of our approach in combina-
tion with the zonotope-based reachability algorithms [2, 16] to deal with NNCS with nonlinear
plant.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:20 H.-D. Tran et al.

Safe reinforcement learning [12] (SRL) is an essential research topic in safety-critical appli-
cations such as medical robotics and self-driving cars. The fundamental challenge in SRL is that
the agent not only needs to learn policies that maximize the long-term return based on the reward
signal but also ensure the safety constraints in learning or deploying processes. There are two main
approaches to safe reinforcement learning. The first one [14, 15] modifies the optimality criterion
with the integration of the safety constraints while the second [1, 13, 17, 21, 25] is based on the
modification of the exploration process with the incorporation of the prior knowledge or guidance
of probabilistic risk metric. Our approach benefits the current state-of-art of safe reinforcement
learning methods since it can formally verify the safety of the learned safe control policies in the
interaction with physical world, i.e., physical dynamics of the agent and the environment. Impor-
tantly, many safe reinforcement learning methods usually quantify the risk by some probabilistic
distribution and use it for learning and deploying processes. Therefore, the expected safety of the
system is usually quantified in a probabilistic manner. In contrast, our verification approach gives
a specific answer, i.e., safe, unsafe, or uncertain, about the safety of the system.

7 CONCLUSION

We have proposed two efficient, exact and over-approximate reachability schemes and an
optimization-based approach for safety verification of CPS with RL controller where the safety
specification is defined based on a nonlinear transformation of the system states. From thorough
experiments on the practical AEBS, we have shown that our method is computationally cheaper
and less conservative than the existing polyhedron approach. More important, it is applicable to
real-world applications. We have also studied an extension of our approach for verification of
NNCS with nonlinear plant and evaluate its potential via the NNACC system. Our future work
is extending the proposed methods for nonlinear NNCS with other types of nonlinear activation
functions such as Tanh or Sigmoid. We are also investigating the runtime verification for CPS
with learning-enabled components leveraging the recent promising approach proposed in [32] in
combination with the neural network reachability analysis methods.

REFERENCES

[1] Anayo K. Akametalu, Jaime F. Fisac, Jeremy H. Gillula, Shahab Kaynama, Melanie N. Zeilinger, and Claire J. Tomlin.
2014. Reachability-based safe learning with Gaussian processes. In 53rd IEEE Conference on Decision and Control. IEEE,
1424–1431.

[2] Matthias Althoff. 2015. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for Continuous

and Hybrid Systems.
[3] Matthias Althoff, Olaf Stursberg, and Martin Buss. 2008. Reachability analysis of nonlinear systems with uncertain

parameters using conservative linearization. In 2008 47th IEEE Conference on Decision and Control. IEEE, 4042–4048.
[4] Stanley Bak and Parasara Sridhar Duggirala. 2017. Simulation-equivalent reachability of large linear systems with

inputs. In International Conference on Computer Aided Verification. Springer, 401–420.
[5] Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson. 2019. Numerical verification of affine systems with up to

a billion dimensions. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and

Control. ACM, 23–32.
[6] Valentina E. Balas and Marius M. Balas. 2006. Driver assisting by inverse time to collision. In 2006 World Automation

Congress. IEEE, 1–6.
[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316 (2016).
[8] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems.

In International Conference on Computer Aided Verification. Springer, 258–263.
[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. 2017. CARLA: An open urban

driving simulator. arXiv preprint arXiv:1711.03938 (2017).
[10] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. 2017. Compositional falsification of cyber-physical systems

with machine learning components. In NASA Formal Methods Symposium. Springer, 357–372.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 105:21

[11] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Learning and verification of feed-
back control systems using feedforward neural networks. IFAC-PapersOnLine 51, 16 (2018), 151–156.

[12] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe reinforcement learning. Journal of

Machine Learning Research 16, 1 (2015), 1437–1480.
[13] Clement Gehring and Doina Precup. 2013. Smart exploration in reinforcement learning using absolute temporal

difference errors. In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 1037–1044.

[14] Peter Geibel and Fritz Wysotzki. 2005. Risk-sensitive reinforcement learning applied to control under constraints.
Journal of Artificial Intelligence Research 24 (2005), 81–108.

[15] Alborz Geramifard, Joshua Redding, Nicholas Roy, and Jonathan P. How. 2011. UAV cooperative control with sto-
chastic risk models. In Proceedings of the 2011 American Control Conference. IEEE, 3393–3398.

[16] Antoine Girard. 2005. Reachability of uncertain linear systems using zonotopes. In Hybrid Systems: Computation and

Control. Springer, 291–305.
[17] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft. 2008. Safe exploration for rein-

forcement learning. In ESANN. 143–148.
[18] John Hertz, Anders Krogh, and Richard G. Palmer. 1991. Introduction to the Theory of Neural Computation. Addison-

Wesley/Addison Wesley Longman.
[19] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2019. Verisig: Verifying safety prop-

erties of hybrid systems with neural network controllers. In Hybrid Systems: Computation and Control (HSCC).
[20] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep neural network compression for aircraft

collision avoidance systems. arXiv preprint arXiv:1810.04240 (2018).
[21] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. 2018. Learning-based model predictive

control for safe exploration. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 6059–6066.
[22] Kristofer D. Kusano and Hampton Gabler. 2011. Method for estimating time to collision at braking in real-world,

lead vehicle stopped rear-end crashes for use in pre-crash system design. SAE International Journal of Passenger Cars-

Mechanical Systems 4, 2011-01-0576 (2011), 435–443.
[23] David N. Lee. 1976. A theory of visual control of braking based on information about time-to-collision. Perception 5,

4 (1976), 437–459.
[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[25] Teodor Mihai Moldovan and Pieter Abbeel. 2012. Safe exploration in Markov decision processes. arXiv preprint

arXiv:1205.4810 (2012).
[26] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: A simple and accurate

method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2574–2582.
[27] Sriram Sankaranarayanan, Souradeep Dutta, and Xin Chen. 2019. Reachability analysis for neural feedback systems

using regressive polynomial rule inference. In Hybrid Systems: Computation and Control (HSCC).
[28] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of neural network controlled autonomous

systems. In Hybrid Systems: Computation and Control (HSCC).
[29] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang,

and Taylor T. Johnson. 2019. Parallelizable reachability analysis algorithms for feed-forward neural networks. In 7th

International Conference on Formal Methods in Software Engineering (FormaliSE2019), Montreal, Canada.
[30] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and

Taylor T. Johnson. 2019. Star-based reachability analsysis for deep neural networks. In 23rd International Symposisum

on Formal Methods (FM’19). Springer International Publishing.
[31] Hoang-Dung Tran, Luan Viet Nguyen, Nathaniel Hamilton, Weiming Xiang, and Taylor T. Johnson. 2019. Reachability

analysis for high-index linear differential algebraic equations (DAEs). In 17th International Conference on Formal

Modeling and Analysis of Timed Systems (FORMATS’19). Springer International Publishing.
[32] Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson. 2019. Decentralized

real-time safety verification for distributed cyber-physical systems. In Formal Techniques for Distributed Objects, Com-

ponents, and Systems (FORTE’19), Jorge A. Pérez and Nobuko Yoshida (Eds.). Springer International Publishing, Cham,
261–277.

[33] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski. 2018. Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. arXiv preprint arXiv:1804.06760 (2018).

[34] Weiming Xiang, Diego Manzanas Lopez, Patrick Musau, and Taylor T. Johnson. 2019. Reachable set estimation and
verification for neural network models of nonlinear dynamic systems. In Safe, Autonomous and Intelligent Vehicles.
Springer, 123–144.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

105:22 H.-D. Tran et al.

[35] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2017. Reachable set computation and safety verification
for neural networks with ReLU activations. arXiv preprint arXiv:1712.08163 (2017).

[36] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson. 2018. Reachable set estimation and
safety verification for piecewise linear systems with neural network controllers. arXiv preprint arXiv:1802.06981

(2018).

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 105. Publication date: October 2019.

