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Abstract— The vulnerability of artificial intelligence (AI) and
machine learning (ML) against adversarial disturbances and
attacks significantly restricts their applicability in safety-critical
systems including cyber-physical systems (CPS) equipped with
neural network components at various stages of sensing and
control. This article addresses the reachable set estimation and
safety verification problems for dynamical systems embedded
with neural network components serving as feedback controllers.
The closed-loop system can be abstracted in the form of a
continuous-time sampled-data system under the control of a
neural network controller. First, a novel reachable set compu-
tation method in adaptation to simulations generated out of
neural networks is developed. The reachability analysis of a class
of feedforward neural networks called multilayer perceptrons
(MLPs) with general activation functions is performed in the
framework of interval arithmetic. Then, in combination with
reachability methods developed for various dynamical system
classes modeled by ordinary differential equations, a recursive
algorithm is developed for over-approximating the reachable set
of the closed-loop system. The safety verification for neural
network control systems can be performed by examining the
emptiness of the intersection between the over-approximation of
reachable sets and unsafe sets. The effectiveness of the proposed
approach has been validated with evaluations on a robotic arm
model and an adaptive cruise control system.

Index Terms— Neural network control systems, reachability,
safety verification, simulation.

I. INTRODUCTION

NEURAL networks have been demonstrated to be effective
tools in controlling complex systems in a variety of

research activities such as stabilization [1], [2] and adaptive
control [3], [4]. In some latest applications, neural networks
have been deployed and played a critical role in high-safety-
assurance systems such as autonomous systems [5], unmanned
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vehicles [6], and aircraft collision avoidance systems [7].
However, due to the vulnerability neural networks against
adversarial disturbances/attacks and the black-box nature of
neural networks, such controllers with a neural network struc-
ture, in essence, are only restricted to the control applications
with the lowest levels of requirements of safety as there is
a short of effective methods to compute the output reachable
set of neural networks and further assure the safety of under-
lying closed-loop systems. It has been frequently observed
that even a slight perturbation against the input of a well-
trained neural network will produce a completely incorrect and
unpredictable output [8]. As we consider a closed-loop system
with a feedback channel involving neural networks, the safety
issues will inevitably arise since disturbances and uncertainties
are unavoidable in measurement and control channels, which
may result in undesirable and unsafe system behaviors even
instability. Furthermore, with advanced adversarial machine
learning (ML) techniques developed recently, such safety
matters for safety-critical control systems with neural net-
work controllers only become even much worse. Therefore,
to integrate artificial intelligence (AI)/ML components such
as neural networks into safety-critical control systems, safety
verification for such AI/ML systems is required at all stages
for the purpose of safety assurance. However, because of
the sensitivity of neural networks against perturbations and
the complex structure of neural networks, the verification of
neural networks represents extreme difficulties. It has been
demonstrated that a simple property verification of a small-
scale neural networks is a nondeterministic polynomial (NP)
complete problem [9].

A. Related Work

Formal verification of neural networks has been well
recognized in recent literature. One of the earliest meth-
ods is the abstraction-refinement approach proposed in [10]
and [11], which is developed for computing the output set
of a feedforward neural network to perform verification.
In [12], a satisfiability modulo theories (SMT) solver was
proposed for the verification of feedforward neural networks.
Some Lyapunov function-based approaches were proposed for
dynamical systems with neural network structures [13]–[15],
in which invariant sets are constructed to estimate reach-
able sets. For a special class of neural networks with recti-
fied linear unit (ReLU) neurons, several methods have been
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reported in the literature such as mixed-integer linear pro-
gramming (MILP) approaches [16], [17], linear programming
(LP)-based approaches [18], the Reluplex algorithm that stems
from the Simplex algorithm [9], and polytope-operation-based
approaches [19], [20]. For neural networks with general
activation functions, the sensitivity for neural networks was
introduced in [21] and [22] and used for various problems, for
instance, weight selection [23], learning algorithm improve-
ment [24], and architecture construction [25]. Based on the
maximal sensitivity concept, a simulation-based verification
approach is introduced in [26]. The output reachable set esti-
mation for feedforward neural networks with general activation
functions is formulated in terms of four convex optimization
problems. These results are able to compute estimated and
exact output sets of a feedforward neural network, and it,
therefore, implies the availability of reachable set estimation
and safety verification of closed-loop systems equipped with
neural network controllers as shown in [27]–[29]. The Verisig
approach [30] transforms a neural network controller with
sigmoid activation functions to an equivalent nonlinear hybrid
system. This is combined with plant dynamics by using
ordinary differential equation (ODE) reachability analysis rou-
tines for safety verification. All those existing methods were
developed mainly based on exploiting the neural network
itself such as the piecewise linear feature of ReLU activation
functions or transformation of neural networks. In this article,
we emphasize that our method focuses on both interval-based
derivations of neural networks as well as taking advantage of
simulations originated from neural networks for reachable set
computation and safety verification of neural network control
systems.

B. Contributions

This article focuses on improving the simulation-based
approach developed in [26] for the output set over-
approximation of feedforward neural networks with gen-
eral activation functions. A novel adaptive simulation-guided
method will be developed and further integrated for safety
verification of closed-loop systems with neural network con-
trollers. In this article, we develop a novel simulation-guided
approach to perform the output reachable set estimation of
feedforward neural networks with general activation functions.
The algorithm is formulated in the framework of interval arith-
metic and under the guidance of a finite number of simulations.
The developed method using the information of simulations is
able to provide much less computational cost than the previous
article [26]. As shown by a robotic arm model example, it only
needs about 3% computational cost of the method proposed
in [26] to obtain the same interval-based reachability analysis
result. We also extend our reachable set estimation result for
safety verification of neural network control systems, in which
plants are modeled by ODEs. We develop an algorithm to
compute the reachable set of a neural network control system
modeled by sampled-data systems. Based on the reachable
set estimation, a safety verification algorithm is developed
to provide formal safe assurance for neural network control
systems, and an adaptive cruise control (ACC) system using
a software prototype is proposed to demonstrate our method.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. Neural Network Control Systems

In this article, we consider a class of continuous-time
nonlinear systems in the form of{

ẋ(t) = f (x(t), u(t))

y(t) = h(x(t))
(1)

where x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu is the control
input, and y(t) ∈ R

ny is the controlled output. The nonlinear
controller is considered in its general form of

u(t) = γ (y(t), v(t), t) (2)

where v(t) ∈ R
nv is the reference input. As we know,

the controller design problem for nonlinear systems in the
general form is quite challenging and still open even if f and h
are available. To avoid the difficulties arising in such controller
design problems for systems with complex model or even
model unavailable, some data-driven approaches which only
rely on the input–output data of the system were developed.
In this article, we consider a class of feedforward neural net-
work trained by input–output data as the feedback controller
of dynamical systems. The feedforward neural network is in
the following general form of

u(t) = �(y(t), v(t)) (3)

where � : Rny × R
nv → R

nu is a neural network trained by
data collected during system operations. We can rewrite the
neural network controller in a more compact form of

u(t) = �(η(t)) (4)

where η(t) = [y�(t) v�(t)]�.
In practice, it always takes certain amount of time to

compute the output signal of the neural network as the control
input of the controlled plant. Hence, the neural network
controller produces the control signals at every sampling time
instant tk , k ∈ N, and then the controller maintains its
value between two successive sampling instants tk and tk+1.
Due to the sampling mechanism of practical control systems,
we can formulate the sampled neural network controller in the
form of

u(t) = �(η(tk)), t ∈ [tk, tk+1) (5)

and by substituting the above controller into system (1), we can
obtain the closed-loop system in the following form:{

ẋ(t) = f (x(t),�(η(tk)))

y(t) = h(x(t))
t ∈ [tk, tk+1) (6)

where η(tk) = [y�(tk) v�(tk)]�. The mechanism of a sampled-
data neural network system in the form of (6) is illustrated
in Fig. 1. It worth mentioning that sampled-data model for
neural network control systems in the form of (6) can be found
in a variety of articles such as [1].
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Fig. 1. Block diagram for continuous-time sampled-data neural network
control systems.

B. Feedforward Neural Networks

In this article, we consider a class of feedforward neural
networks which is called multilayer perceptrons (MLPs).
The basic processing elements in MLPs are neurons which
are defined by activation functions in the form of

ui = φ

⎛
⎝ n∑

j=1

ωi jη j + θi

⎞
⎠ (7)

where η j is the j th input of the i th neuron, ωi j is the weight
from the j th input to the i th neuron, θi is the bias of the
i th neuron, ui is the output of the i th neuron, and φ(·) is the
activation function. There are a variety of activation functions
such as ReLU, tan h, and logistic. In this article, our approach
is able to deal with activation functions without considering
their specific forms.

In this article, we assume that the MLP has L layers, and
each layer �, 1 ≤ � ≤ L, consists of n{�} neurons. Especially,
we use layer � = 0 to denote the input layer where the input
vector is passed to the network, and n{0} is the number of the
inputs for the network. In addition, n{L} is used to denote the
output layer. For the layer �, the input vector of the layer � is
η{�}, and the weight matrix and the bias vector are

W{�} =
[
ω
{�}
1 , . . . , ω

{�}
n{�}

]�
(8)

θ {�} =
[
θ
{�}
1 , . . . , θ

{�}
n{�}

]�
(9)

and the output vector of layer � can be written in the form of

u{�} = φ�(W{�}η{�} + θ {�}) (10)

where φ�(·) denotes the activation function of layer �.
As the output of layer � equals the input of its successive

layer �+ 1, we can obtain the mapping from the input vector
of the input layer � = 0 to the output vector of the output layer
� = L. Namely, the input–output relationship of an MLP can
be expressed in the following form:

u{L} = �(η{0}) (11)

where �(·) � φL ◦ φL−1 ◦ · · · ◦ φ1(·).

C. Problem Formulation

Given an input set, the output set of an MLP is given by
the following definition.

Definition 1: Given an input set H, the output set of the
MLP in the form of (11) is

U = {
u{L} ∈ R

nu | u{L} = �(η{0}), η{0} ∈ H}
. (12)

The exact output set of an MLP is extremely difficult to
obtain due to the complexity of neural networks. We often
resort to compute an over-approximation of U which would
be more feasible and practical.

Definition 2: Given the output set U of MLP (11), if there
exist a set Ue such as U ⊆ Ue holds, then Ue is an output
reachable set estimation of MLP (11).

The first key issue that needs to be addressed in this article
is the reachable set estimation for an MLP in the form of (11),
which is summarized as follows.

Problem 1: Given an MLP in the form of (11) and a
bounded set H as input set, how does one compute a set Ue

such that U ⊆ Ue holds and moreover, the set Ue is required
to be as small as possible?1

Then, let us consider the neural network control system (6).
The state trajectory of the closed-loop system (6) from a single
initial state x0 is denoted by x(t; x0, v(·)), where t ∈ R≥0 is
the time and v(·) stands for the input trajectory. With an initial
set and input set, the reachable set for the closed-loop system
(6) is given as follows.

Definition 3: Given a neural network control system in the
form of (6), an initial set X0 and an input set V , the reachable
set at time instant t is defined by

R(t) = {
x(t; x0, v(·)) ∈ R

nx | x0 ∈ X0, v(t) ∈ V}
(13)

and the reachable set of system (6) over time interval [t0, t f ]
is defined by

R([t0, t f ]) =
⋃

t∈[t0,t f ]
R(t). (14)

Similarly, for most of the system classes, the exact reachable
set cannot be computed. Instead, we resort to derive over-
approximations for the purpose of safety verification.

Definition 4: Given system (6) and its reachable set R(t),
Re(t) is an over-approximation of R(t) at time t if R(t) ⊆
Re(t) holds. Moreover, Re([t0, t f ]) = ⋃

t∈[t0,t f ]Re(t) is an
over-approximation of R([t0, t f ]) over interval [t0, t f ].

The main problem, the reachable set estimation problem for
neural network control system (6), is summarized as below.

Problem 2: Given closed-loop system (6), a bounded initial
set X0 and an input set V , how does one find a set Re(t) such
that R(t) ⊆ Re(t) holds?

Based on the reachable set estimation of neural network
control systems, the safety verification for such dynamical
systems can be performed. The safety specification is defined
by a set the state space, which describes the safety requirement
for the system.

Definition 5: Given neural network control system (6) and a
safety specification set S which formalizes the safety require-
ments. The closed-loop system (6) is safe during time interval
[t0, t f ] if and only if the following condition holds:

R([t0, t f ]) ∩ ¬S = ∅ (15)

where ¬ is the logical negation symbol.

1For a set U , its over-approximation Ue,1 is smaller than another over-
approximation Ue,2 if dH(Ue,1,U) < dH(Ue,2,U) holds, where dH stands for
the Hausdorff distance.
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Therefore, the safety verification problem for neural net-
work control system (6) is as follows.

Problem 3: Given a neural network control system in the
form of (6), a bounded initial set X0, an input set V , and a
safety specification set S, how does one examine if the safety
requirement (15) holds?

Before ending this section, a useful lemma is presented,
which implies that the safety verification of the neural network
control system (6) can be relaxed with the help of the reachable
set estimation Re, instead of using the exact reachable set R.

Lemma 1: Given a neural network control system in the
form of (6) and a safety specification set S, the closed-loop
system (6) is safe over time interval [t0, t f ] if the following
condition holds:

Re([t0, t f ]) ∩ ¬S = ∅ (16)

where R([t0, t f ]) ⊆ Re([t0, t f ]).
Proof: Because of R([t0, t f ]) ⊆ Re([t0, t f ]), condition

(16) implies R([t0, t f ]) ∩ ¬S = ∅. The proof is complete.

III. SIMULATION-GUIDED REACHABILITY

ANALYSIS FOR NEURAL NETWORKS

A. Preliminaries

Let [x] = [x, x], [y] = [y, y] be real compact intervals
and ◦ denote one of the basic operations including addition,
subtraction, multiplication, and division, respectively, for real
numbers, that is ◦ ∈ {+,−, ·, /}, where it is assumed that
0 /∈ [b] in the case of division. We define these operations
for intervals [x] and [y] by [x] ◦ [y] = {x ◦ y | x ∈ [y],
x ∈ [y]}. The width of an interval [x] is defined and denoted
by w([x]) = x−x . The set of compact intervals in R is denoted
by IR. We say [φ] : IR → IR is an interval extension of
function φ : R→ R, if for any degenerate interval arguments,
[φ] agrees with φ such that [φ]([x, x]) = φ(x). In order to
consider multidimensional problems where x ∈ R

n is taken
into account, we denote [x] = [x1, x1] × · · · × [xn, xn] ∈ IR

n,
where IR

n denotes the set of compact interval in R
n . The

width of an interval vector x is the largest of the widths of
any of its component intervals w([x]) = maxi=1,...,n(x i − x i).
A mapping [�] : IRn → IR

m denotes the interval extension of
a function � : Rn → R

m . An interval extension is inclusion
monotonic if, for any [x1], [x2] ∈ IR

n , [x1] ⊆ [x2] implies
[�]([x1]) ⊆ [�]([x2]). A fundamental property of inclusion
monotonic interval extensions is that x ∈ [x] ⇒ �(x) ∈
[�]([x]), which means the value of � is contained in the
interval [�]([x]) for every x in [x].

Definition 6 [31]: Piecewise monotone functions, includ-
ing absolute value, exponential, logarithm, rational power, and
trigonometric functions, are standard functions.

Lemma 2 [31]: A function � composed by finitely many
standard functions with elementary operations {+,−, ·, /} is
inclusion monotone.

Definition 7 [31]: Given an interval extension [�]([x]), if
there is a constant ξ such that w([�]([x])) ≤ ξw([x]) for
every [x] ⊆ [x0], then [�]([x]) is said to be Lipschitz in [x0].

Lemma 3 [31]: If a function �(x) satisfies a Lipschitz
condition in [x0],

‖�(x2)−�(x1)‖ ≤ ξ‖x2 − x1‖, x1, x2 ∈ [x0] (17)

then the interval extension [�]([x]) is a Lipschitz interval
extension in [x0],

w([�]([x])) ≤ ξw([x]), [x] ⊆ [x0]. (18)

Assumption 1: The activation function φ considered in this
article is composed of standard functions with finitely many
elementary operations.

The above assumption allows that the reachability analysis
of MLP can be conducted in the framework of interval
arithmetic, and to our knowledge, popular activation functions
such as tanh, sigmoid, and ReLU satisfy this assumption.

B. Interval Analysis

First, we consider a single layer u = φ(Wη+ θ). Given an
interval input [η], the interval extension is [φ](W[η] + θ) =
[u1, u1] × · · · × [un, un] = [u], where

ui = min
η∈[η]

φ

⎛
⎝ n∑

j=1

ωi jη j + θi

⎞
⎠ (19)

ui = max
η∈[η]

φ

⎛
⎝ n∑

j=1

ωi jη j + θi

⎞
⎠. (20)

According to (19) and (20), the minimum and maximum
values of the output of nonlinear function φ are required to
compute the interval extension [φ]. However, the optimization
problems are still challenging for general nonlinear functions.
We propose the following monotonic assumption for activation
functions.

Assumption 2: For any two scalars η1 ≤ η2, the activation
function satisfies φ(η1) ≤ φ(η2).

It worth mentioning that Assumption 2 can be satisfied
by a variety of activation functions such as logistic, tanh,
and ReLU, all satisfy Assumption 2. Taking advantage of
the monotonic property of φ, we have interval extension
[φ]([η]) = [φ(η), φ(η)]. Therefore, ui and ui in (19) and (20)
can be explicitly written out as

ui = φ
(∑n

j=1 p
i j
+ θi

)
(21)

ui = φ
(∑n

j=1 pi j + θi

)
(22)

with p
i j

and pi j defined by

p
i j
=

{
ωi jη j

, ωi j ≥ 0

ωi jη j , ωi j < 0
(23)

pi j =
{

ωi jη j , ωi j ≥ 0

ωi jη j
, ωi j < 0.

(24)

From (21)–(24), the output interval of a single layer can
be efficiently computed with these explicit expressions. Then,
we consider the MLP u{L} = �(η{0}) with multiple layers,
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the interval extension [�]([η{0}]) can be computed by the
following layer-by-layer computation.

Theorem 1: Given an MLP in the form of (11) with activa-
tion functions satisfying Assumption 2 and an interval input
[η{0}], an interval extension can be determined by

[�]([η{0}]) = [φ̂L ] ◦ · · · ◦ [φ̂1] ◦ [φ̂0]([η{0}]) (25)

where [φ̂�]([η{�}]) = [φ�](W{�}[η{�}] + θ {�}) = [u{�}] in which

u{�}i = φ�

⎛
⎝ n{�}∑

j=1

p{�}
i j
+ θ

{�}
i

⎞
⎠ (26)

u{�}i = φ�

⎛
⎝ n{�}∑

j=1

p{�}i j + θ
{�}
i

⎞
⎠ (27)

with p{�}
i j

and p{�}i j defined by

p{�}
i j
=

{
ω
{�}
i j η{�}

j
, ω

{�}
i j ≥ 0

ω
{�}
i j η
{�}
j , ω

{�}
i j < 0

(28)

p{�}i j =
⎧⎨
⎩

ω
{�}
i j η
{�}
j , ω

{�}
i j ≥ 0

ω
{�}
i j η{�}

j
, ω

{�}
i j < 0.

(29)

Proof: We denote φ̂�(η
{�}) = φ�(W{�}η{�} + θ {�}). Given

an MLP, it essentially has η{�} = φ̂�−1(η
{�−1}), � = 1, . . . , L

which leads to (25). Then, for each layer, the interval extension
[u{�}] computed by (26)–(29) can be obtained by (21)–(24).

According to the explicit expressions (25)–(29), the com-
putation on interval extension [�] can be performed in a fast
manner. In the next step, we should discuss the conservative-
ness for the computation outcome of (25)–(29).

Theorem 2: The interval extension [�] of neural network
� composed by activation functions satisfying Assumption 1
is inclusion monotonic and Lipschitz such that

w([�]([η])) ≤ ξ L
L∏

�=1

∥∥W{�}
∥∥w([η]), [η] ⊆ IR

n{0} (30)

where ξ is a Lipschitz constant for activation functions in �.
Proof: Under Assumption 1, the inclusion monotonicity

can be obtained directly based on Lemma 2. Then, we denote
φ̂�(η

{�}) = φ�(W{�}η{�} + θ {�}). For any η1, η2, it has∥∥∥φ̂�(η
{�}
2 )− φ̂�(η

{�}
1 )

∥∥∥
≤ ξ

∥∥∥W{�}η{�}2 −Wη
{�}
1

∥∥∥
≤ ξ

∥∥W{�}
∥∥∥∥∥η

{�}
2 − η

{�}
1

∥∥∥.

Due to η{�} = φ̂�−1(η
{�−1}), � = 1, . . . , L, ξ L

∏L
�=1

∥∥W{�}
∥∥

becomes the Lipschitz constant for �, and (30) can be
established by Lemma 3.

We denote the set image for neural network � as follows:

�([η{0}]) = {�(η{0}) : η{0} ∈ [η{0}]}. (31)

Since [�] is inclusion monotonic according to Theorem 2,
one has �([η{0}]) ⊆ [�]([η{0}]). We have [�]([η{0}]) =
�([η{0}]) + E([η{0}]) for some interval-valued function

E([η{0}]) such that w([�]([η{0}])) = w(�([η{0}])) +
w(E([η{0}])).

Definition 8: w(E([η{0}])) = w([�]([η{0}]))−w(�([η{0}]))
is the excess width of interval extension of neural network
�([η{0}]).

Explicitly, the excess width measures the conservativeness
of interval extension [�] regarding its corresponding func-
tion �. The following theorem gives the upper bound of the
excess width w(E([η{0}])).

Theorem 3: Given an MLP in the form of (11) with an
interval input [η{0}], the excess width w(E([η{0}])) satisfies

w(E([η{0}])) ≤ γw([η{0}]) (32)

where γ = ξ L
∏L

�=1

∥∥W{�}
∥∥.

Proof: We have [�]([η{0}]) = �([η{0}]) + E([η{0}]) for
some E([η{0}]) and

w(E([η{0}])) = w([�]([η{0}]))−w(�([η{0}]))
≤ w([�]([η{0}]))

≤ ξ L
L∏

�=1

∥∥W{�}
∥∥w([η{0}])

which means (32) holds.
Given a neural network � which means W{�} and ξ are

fixed, Theorem 3 implies that a less conservative result can be
only obtained by reducing the width of input interval [η{0}].
On the other hand, a smaller w([η{0}]) means more subdivi-
sions of an input interval which will bring more computational
cost. Therefore, how to generate appropriate subdivisions of
an input interval is the key issue for the reachability analysis
of neural networks in the framework of interval arithmetic.
In the next section, an efficient simulation-guided method is
proposed to address this key problem.

C. Simulation-Guided Reachability Analysis

Inspired by the Moore–Skelboe algorithm [32], we propose
a reachable set computation algorithm under the guidance of
a finite number of simulations. It proposes an adaptive input
interval partitioning scheme with the help of simulations. The
simulation-guided algorithm shown in Algorithm 1 checks the
emptiness of the intersection between the computed output set
and the over-approximation interval for simulations, within
a predefined tolerance ε. This algorithm is able to avoid
unnecessary partition for the input interval to get a tight output
range. The tightness of reachable set estimation is accom-
plished by dividing and checking the initial input interval into
increasingly smaller subintervals, as seen in Algorithm 1.

1) Initialization: Perform N simulations for neural network
� to get N output points usim,n , n = 1, . . . , N and
compute an interval [usim] such that usim,n ∈ [usim], ∀n.
The N simulations can be generated either ran-
domly or by gridding input set. Since our approach is
based on interval analysis, convert input set H to an
interval [η] such that H ⊆ [η]. Compute the initial
output interval [u] = [�]([η]) by (25)–(29). Initialize
set M = {([η], [u])}. Set a tolerance ε > 0, which will
be used to terminate algorithm.
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Algorithm 1 Simulation-Guided Reachable Set Estimation
Input : Feedforward neural network � ; Input set H;

Tolerance ε; Number of simulations N .
Output: Output set estimation Ue.

1 Function reachMLP
/* Initialization */

2 Compute interval [η] such that H ⊆ [η] ;
3 [u] ← [�]([η]) ; // Using (25)–(29)
4 M← {([η], [u])} ;
5 Compute N simulations usim,n = �(ηsim,n),

n = 1, . . . , N ;
6 Compute interval [usim] such that usim,n ∈ [usim], ∀n ;
7 Ue ← ∅ ;

/* Simulation-guided bisection */
8 while M �= ∅ do
9 Select and remove an element ([η], [u]) from M;

10 if [u] ⊆ [usim] then
11 Ue ← Ue ∪ [u] ;
12 Continue ;
13 else
14 if w([η]) > ε then
15 Bisect [η] to obtain [η1] and [η2] ;
16 [u1] ← [�]([η1]) ; // Using

(25)–(29)
17 [u2] ← [�]([η2]) ; // Using

(25)–(29)
18 M←M ∪ {([u1], [η1])} ∪ {([u2], [η2])} ;
19 else
20 Break ; // Bisection terminates
21 end
22 end
23 end
24 return Ue ← Ue ∪

(⋃
{[η],[u]}∈M[u]

)

2) Simulation-Guided Bisection: This is the key step in the
algorithm. Select an element ([η], [u]) for simulation-
guided bisection. If the output interval [u] satisfies
[u] ⊆ [usim], we can discard this subinterval for the
subsequent dividing and checking since it has been
proven to be included in the output range. Otherwise,
the bisection action will be activated to produce finer
subdivisions to be added to M for subsequent checking.
The bisection process is guided by simulations since the
bisection actions are totally determined by the nonempti-
ness of the intersection between output interval sets and
the interval for simulations. This distinguishing feature
leads to finer subdivisions when the output set is getting
close to the boundary of interval for simulations, and
on the other hand, coarse subdivisions are sufficient
for interval reachability analysis when the output set
is included in the interval for simulations. Therefore,
unnecessary computational cost can be avoided.

3) Termination: The simulation-guided bisection continues
until the width of subdivisions becomes less than the
predefined tolerance ε. Generally, a smaller tolerance ε
will lead to a tighter output interval computation result.

Fig. 2. Robotic arm with two joints. The normal working zone of (θ1, θ2)
is colored in green θ1, θ2 ∈ [(5π/12), (7π/12)]. The buffering zone is in
yellow θ1, θ2 ∈ [(π/3), (5π/12)] ∪ [(7π/12), (2π/3)]. The forbidden zone is
θ1, θ2 ∈ [0, (π/3)] ∪ [(2π/3), 2π ].

D. Reachability Analysis of a Robotic Arm Model

In [26], a learning forward kinematics of a robotic arm
model with two joints is proposed, shown in Fig. 2. The
learning task is using a feedforward neural network to predict
the position (x, y) of the end with knowing the joint angles
(θ1, θ2). The input space [0, 2π] × [0, 2π] for (θ1, θ2) is
classified into three zones for its operations: normal working
zone θ1, θ2 ∈ [(5π/12), (7π/12)], buffering zone θ1, θ2 ∈
[(π/3), (5π/12)] ∪ [(7π/12), (2π/3)], and forbidden zone
θ1, θ2 ∈ [0, (π/3)] ∪ [(2π/3), 2π]. The detailed formulation
for this robotic arm model and neural network training can be
found in [26].

In [26], a uniform partition of input interval, which is
the union of normal working and buffering zones (θ1, θ2) ∈
[(π/3), (2π/3)]×[(π/3), (2π/3)], is used to compute an over-
approximation for safety verification. The safety specification
for the position (x, y) is an interval set S = {(x, y) | −14 ≤
x ≤ 3 and 1 ≤ y ≤ 17}. To illustrate the advantages
of simulation-guided approach, we aim to compute a tight
output interval using both uniform partition method in [26]
and Algorithm 1. The precision/tolerance for both methods is
chosen the same, ε = 0.01. The number of simulations used
in Algorithm 1 is set to be 1000. The computed output ranges
are shown in Figs. 3 and 4. It can be clearly observed that
two methods can produce same output range estimations, that
is Ue = {(x, y) | −12.0258 ≤ x ≤ 1.1173 and 2.8432 ≤
y ≤ 14.8902} which is sufficient to ensure the safety due
to Ue ⊆ S. Though both methods can achieve same output
range analysis results, the computation costs are significantly
different as shown in Table I. In [26], a uniform partition for
input space is used, and it results in 16 384 intervals with
precision ε = 0.01 and the computation takes 4.4254 s. Using
our simulation-guided approach, the safety can be guaranteed
by partitioning the input space into 397 intervals (2.42% of
those by uniform partition method in [26]) with tolerance
ε = 0.01. The simulation-guided partition of the input interval
[(π/3), (2π/3)] × [(π/3), (2π/3)] is shown in Fig. 5. Along
with the less number of intervals involved in the computation
process, the computational time is 0.1423 s (3.22% of that
by uniform partition method in [26]) for simulation-guided
approach.2

2The source code is available at: https://github.com/xiangweiming/ignnv
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Fig. 3. Output intervals obtained by simulation-guided methods. The
397 output intervals (blue rectangles) are generated and the output range is
Ue = {(x, y) | −12.0258 ≤ x ≤ 1.1173 and 2.8432 ≤ y ≤ 14.8902} (black
rectangle). Red points are 5000 random outputs which are all included in
output intervals.

Fig. 4. Output intervals obtained by uniform partition method in [26]. The
16 384 output intervals (blue rectangles) are generated and the output range
is Ue = {(x, y)| − 12.0258 ≤ x ≤ 1.1173 and 2.8432 ≤ y ≤ 14.8902} (black
rectangle). Red points are 5000 random outputs which are all included in
output intervals.

TABLE I

COMPARISON ON NUMBER OF INTERVALS AND COMPUTATIONAL TIME

BETWEEN SIMULATION-GUIDED METHOD AND UNIFORM
PARTITIONING METHOD

IV. REACHABILITY ANALYSIS FOR NEURAL

NETWORK CONTROL SYSTEMS

A. Reachability Analysis

The reachable set estimation for a sampled-data neural net-
work control system in the form of (6) involves two essential
portions. First, an over-approximation of the output set of
the underlying neural network controllers is supposed to be
computed in the employment of the aforementioned output set
computation result of neural networks, Algorithm 1. Then, the
reachable set and output set of the controlled plant (1) needs
to be computed accordingly. There are a variety of existing
approaches and tools for reachable set computation of systems
modeled by ODEs such as those well-developed in [33]–[37].

Fig. 5. Simulation-guided bisections of input interval by Algorithm 1.
Guided by the outputs of simulations, finer partitions are generated when
the output intervals are close to the boundary of the interval of simulations,
and coarse partitions are generated when the output intervals are in the interval
of simulations.

Due to the existence of those reachable set estimation of
ODE models, we shall not develop new methods or tools for
ODE models. We use the following functions to denote the
reachable set estimation that is obtained by using reachable
set computation tools for sampled data ODE models during
[tk, tk+1]

Re([tk, tk+1]) = reachODEx( f,U(tk),Re(tk)) (33)

Ye(tk) = reachODEy(h,Re(tk)) (34)

where U(tk) is the input set for sampling interval [tk, tk+1].
Re(tk) and Re([tk, tk+1]) are the estimated reachable sets
for state x(t) at sampling instant tk and interval [tk, tk+1],
respectively. Ye(tk) is the estimated reachable set for
output y(tk).

Combining reachODEx, reachODEy with reachMLP
proposed by Algorithm 1, an over-approximation of the reach-
able set of a closed-loop system in the form of (6) can be
obtained. The computation process is a recursive algorithm,
which is summarized by Algorithm 2 and Proposition 1. The
general steps can be illustrated as below:

1) Reachable Set Estimation of Neural Network Con-
troller: Compute the output reachable set estimation
for the neural network controller using Algorithm 1 at
each beginning sampling instant tk , by which an over-
approximation of the output set is obtained.

2) Reachable Set Estimation of Plant: As the output gen-
erated by the neural network controller holds its value
unchanged in [tk, tk+1], perform the reachable set esti-
mation for the nonlinear continuous-time system using
sophisticated methods or tools such as [33]–[37].

3) Return for Next Sampling Interval Computation: Return
to the first step of reachable set estimation of neural net-
work controller for the next sampling period [tk+1, tk+2].

Proposition 1: Given a neural network control system in the
form of (6), an initial set X0 and an input set V , an estimated
reachable set Re([t0, t f ]) can be obtained by Algorithm 2
such that R([t0, t f ]) ⊆ Re([t0, t f ]), where R([t0, t f ]) is the
reachable set of system (6).
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Algorithm 2 Reachable Set Estimation for Sampled-Data
Neural Network Control Systems
Input : System dynamics f , h; Feedforward neural

network � ; Initial Set X0; Input set V ;
Tolerance ε; Number of simulations N ;
Sampling sequence tk , k = 0, 1, . . . , K ;
Termination time t f .

Output: Reachable set estimation Re([t0, t f ]).
1 Function reachNNCS

/* Initialization */
2 k ← 0 ;
3 tK+1 ← t f ;
4 Re(t0)← X0 ;

/* Iteration for all sampling
intervals */

5 while k ≤ K do
6 Ye(tk)← reachODEy(h,Re(tk)) ;
7 H← Ye(tk)× V ;
8 Ue(tk)← reachMLF(�,H, ε, N) ;

// Algorithm 1
9 Re([tk, tk+1])← reachODEx( f,Ue,Re(tk)) ;

10 k← k + 1;
11 end
12 return Re([t0, t f ])← ⋃

k=0,1...,K Re([tk, tk+1])

Fig. 6. Illustration of ACC systems and simulink block diagram of the closed-
loop system. (a) Adaptive cruise control. (b) Simulink model of adaptive cruise
control system.

The safety specification can be examined by checking the
emptiness of the intersection between the proposed unsafe
regions¬S and the reachable set estimation outcome produced
by Algorithm 2.

Proposition 2: Given a neural network control system in
the form of (6) and a safety specification S, if Re([t0, t f ]) ∩
¬S = ∅, where Re([t0, t f ]) is a reachable set estimation
obtained by Algorithm 2, then the closed-loop system (6) is
safe over time interval [t0, t f ].

B. Safety Verification of ACC Systems

In this section, our approach will be evaluated by the safety
verification of an ACC system equipped with a neural network

controller as depicted in Fig. 6. The ACC system consists of
two cars, the ego car with ACC module that has a radar sensor
to measure the distance to the lead car which is denoted by drel,
and the relative velocity against the lead car denoted by vrel.
There are two system operating modes including speed control
and spacing control. In the speed control mode, the ego car
travels at a speed vset. In the spacing control mode, the ego
car’s safety control goal is to maintain a safe distance from
the leading car, dsafe. In summary, the system dynamics is in
the form of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋl(t) = vl(t)

v̇l(t) = γl(t)

γ̇l(t) = −2γl(t)+ 2αl(t)− μv2
l (t)

ẋe = ve(t)

v̇e(t) = γe(t)

γ̇e(t) = −2γe(t)+ 2αe(t)− μv2
e (t)

(35)

where xl(xe), vl(ve), and γl(γe) are the position, velocity, and
actual acceleration of the lead (ego) car, respectively. αl (αe)
is the acceleration control input applied to the lead (ego) car,
and μ = 0.001 is the friction parameter. The ACC controller
we considered here is a 2 × 20 feedforward neural network
with tanh as its activation functions. The sampling scheme
is considered as a periodic sampling every 0.2 s, that is
tk+1 − tk = 0.2 s.

The inputs to the neural network ACC control module are:

1) driver-set velocity vset;
2) time gap tgap;
3) velocity of the ego car ve;
4) relative distance to the lead car drel = xl − xe;
5) relative velocity to the lead car vrel = vl − ve.

The output for the neural network ACC controller is the
acceleration of the ego car, αe. In summary, the sampled-data
neural network controller for the acceleration control of the
ego car is in the form of

αe(t) = �(vset(tk), tgap, ve(tk), drel(tk), vrel(tk)), t ∈ [tk, tk+1].
The threshold of the safe distance between the lead car and

the ego car can be considered as a function of the ego car
velocity ve. The safety specification is defined as

dsafe > dthold = ddef + tgap · ve (36)

where ddef is the standstill default spacing and tgap is the time
gap between the vehicles. The safety verification scenario is
that the lead car decelerates with αl = −2 to reduce its speed
as an emergency braking occurs. We expect that the ego car
is able to maintain a safe relative distance to the lead car to
avoid collision. The safety specification is defined by (36) with
tgap = 1.4 s and ddef = 10. The time horizon that we want to
verify is 5 s after the emergency braking comes into play. The
initial intervals are [xl(0)] = [94, 96], [vl(0)] = [30, 30.2],
[γl(0)] = 0, [xe(0)] = [10, 11], [ve(0)] = [30, 30.2], and
[γe(0)] = 0.

We apply Algorithm 2 to perform the reachable set esti-
mation for the closed-loop system. The tolerance is chosen
as ε = 0.1 and number of simulations is 1 × 105. For this
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Fig. 7. Reachable set estimation for both lead car (a) and ego car (b). The
over-approximation of reachable set (blue boxes) includes all 100 randomly
generated system trajectories (green lines).

Fig. 8. Reachable set estimation for relative distance and velocity between
lead and ego cars (blue boxes), there is no intersection between relative
distance set and safe distance threshold (red boxes) in (a). In (b), the flowpipe
of relative distance (blue) has no intersection with the safe distance threshold
area (red) which also implies the safety of the ACC system. The green lines
are 100 randomly generated system trajectories.

neural network controller, we use a simulation-guided method
to compute the output set of the control signal. Meanwhile, for
the continuous-time nonlinear dynamics, we use CORA [33] to
do the reachability analysis for the time interval between two
sampling instants. The reachable set estimations for both lead
car and ego car are shown in Fig. 7. In order to verify the safety
property, we compute the reachable set estimation of relative
distance based on the reachable sets of the lead car and ego car.
In Fig. 8, the reachable set of relative distance does not violate
the threshold of safe distance which is defined by (36), so it
can be concluded that the ACC system is safe during the time
interval [0, 5] s in this safety verification scenario of interest.3

V. CONCLUSION

This article investigated the reachable set estimation and
safety verification problems for a class of neural network

3The source code is available at: https://github.com/xiangweiming/ignnv

control systems which can be modeled as sampled data
continuous-time dynamical systems. A novel simulation-
guided approach is developed to soundly over-approximate the
output set of a class of feedforward neural networks called
MLP. Based on the interval analysis of neural networks and
guidance of simulations generated from neural networks,
the output reachable set can be efficiently over-approximated
upon avoidance of unnecessary computation cost. Compared
with the other simulation-based approach in [26], the approach
developed in this article can reduce the computational cost
significantly. Furthermore, in a combination of reachable set
computation methods and tools for ODE models, a recursive
algorithm is developed to perform reachable set estimation
and safety verification of neural network control systems.
Beyond the initial results derived in this article, other modeling
and reachability analysis approaches for the plant and neural
network controllers, as well as broader classes of neural
networks, should be considered in the future study.
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