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Automata-based modeling of hybrid and cyber-physical systems (CPS) is an important formal abstraction amenable to
algorithmic analysis of its dynamic behaviors, such as in veriication, fault identiication, and anomaly detection. However,
for realistic systems, especially industrial ones, identifying hybrid automata is challenging, due in part to inferring hybrid
interactions, which involves inference of both continuous behaviors, such as through classical system identiication, as well
as discrete behaviors, such as through automata (e.g., L*) learning. In this paper, we propose and evaluate a framework for
inferring and validating models of deterministic hybrid systems with linear ordinary diferential equations (ODEs) from
input/output execution traces. The framework contains algorithms for the approximation of continuous dynamics in discrete
modes, estimation of transition conditions, and the inference of automata mode merging. The algorithms are capable of
clustering trace segments and estimating their dynamic parameters, and meanwhile, deriving guard conditions that are
represented by multiple linear inequalities. Finally, the inferred model is automatically converted to the format of the original
system for the validation. We demonstrate the utility of this framework by evaluating its performance in several case
studies as implemented through a publicly available prototype software framework called HAutLearn and compare it with a
membership-based algorithm.

CCS Concepts: · Computing methodologies→Modeling methodologies;Model veriication and validation; · Computer

systems organization→ Embedded and cyber-physical systems.

Additional Key Words and Phrases: Hybrid systems, System identiication, Automata learning.

1 INTRODUCTION

Modeling and learning of systems from traces has a long and storied history, with some original efective
algorithms for inding automata from their traces described by Angluin’s L∗ algorithm [4] now instantiated
in software packages such as LearnLib [45]. From a software engineering vantage point, one can view inding
automata from traces as a form of speciication inference for an implementation of a system. Speciication inference
is an efective technique for automated documentation, model validation, model repair, and many other tasks,
often restricted to subclasses of possible speciications that may be inferred, such as invariants [15ś17, 29, 39].
From the automata theoretic perspective, one can thus view learning automata from traces as a method to infer
classes of speciications beyond safety and into temporal behaviors, such as liveness.
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Fig. 1. Overview of the framework proposed in this paper to learn hybrid automata with linear (afine) ODEs, guards,

invariants, and resets from time-series data (traces).

A hybrid automaton is a formal model that models both continuous and discrete behaviors through a combi-
nation of continuously-evolving real-valued variables and discrete components, which together exhibit mixed
dynamical behaviors [25]. Continuous variables evolve over intervals of real time with respect to some speciied
ordinary diferential equations (ODEs) or inclusions. Discrete behaviors are modeled in an automata-theoretic
manner, typically deined by some forms of graphs or state machines. The discrete modes may contain invariant
conditions which, once violated, will induce transitions to diferent modes. The transitions between discrete
modes may also have guards with conditions including exogenous events and predicates over continuous variables.
One of the canonical examples is the model of a bouncing ball. Released from a speciied height, the ball exhibits
diferent continuous dynamics after impacting the ground. Hybrid automata provides an expressive and useful
abstraction to model diferent dynamical systems, and have proven valuable in various areas, such as system
simulation, anomaly detection, reachability analysis, veriication, and identiication of optimal policies [3, 26].
Realistic systems are often too complex to be designed purely in a formalism such as hybrid automata, and
often rely on complex software toolchains such as the MathWorks’ Simulink/Statelow, with a signiicantly more
expressive modeling framework, but with unclear semantics. As hybrid automata models often are not the design
engineer’s modeling tool of choice, inferring hybrid automata from traces of complex and black-box systems can
provide insight into the behaviors of those systems. Actual physical environments are usually too complicated
to be analyzed using available technologies. Learning hybrid automata from system behaviors can provide a
convenient way for system analysis in the abstraction layer so that the complexity of hybrid systems can be
reduced while safety properties are still kept in its relevant behavior and the system itself can become accessible
to existing analysis tools. Therefore, it helps engineers develop high-level automata strategies.

The contributions of this paper are that an automata-based framework for the inference and validation of hybrid
systems from execution traces is developed, with restrictions on the continuous behaviors, guards, invariants,
and resets to be described by linear (aine) equations. The inference framework includes ive steps as shown
in Figure 1: (1) cluster execution trace segments according to their dynamics, (2) it an ordinary diferential
equation (ODE) to each cluster, (3) estimate guard conditions for the discontinuities, or changepoints in traces,
(4) merge modes and transitions in terms of a deined compatibility criterion, and (5) prune duplicate and other
erroneous transitions that arise from steps 1 and 3. We approximate the continuous dynamics by itting linear
(aine) ODEs to segmented traces, which is a classical problem in system identiication [33]. To distinguish
diferent dynamics from traces, we develop a method to calculate their solution spaces within a pre-speciied
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Fig. 2. Overview of the validation of the proposed framework for the method described in this paper. A given hybrid

automaton is specified in the SpaceEx/HyST [7, 21] format, automatically translated to a Simulink/Stateflow model using

HyST [6, 7], simulated to generate time series data (traces). The hybrid automata learning framework is then applied to

these traces, and a learned hybrid automaton is generated in the SpaceEx/HyST format, and simulated again to generate

traces to validate the learned model’s behaviors against the original model’s behaviors.

error bound and cluster them accordingly. For guard conditions, under the assumption that they are described
by linear inequalities, a subspace clustering algorithm is applied to estimate their parameters by clustering
changepoints into a low-dimensional line or plane. For the mode merging, a method based on the preix tree
acceptor (PTA) is applied to merge similar modes without introducing non-determinism into the model, and then
erroneous transitions are pruned before generating the inal hybrid automaton that can recreate the source trace
data. The framework is implemented in a prototype software tool within Matlab relying in part on the HyST
source transformation and translation tool [7] and its integration with Simulink/Statelow [6]. The framework is
evaluated and validated against several standard hybrid systems benchmarks. These examples were chosen in
part so that the validation approach illustrated in Figure 2 could be illustrated, where both syntactic and semantic
similarities could be compared to the learned automata.

2 RELATED WORK

Signiicant related works have been developed in the context of automata learning for purely discrete systems,
such as inite state automata [4]. For timed, switched, and hybrid systems, there has been less investigation,
although there are several recently proposed methods [36, 44, 49, 51]. From the control theory, there are more
related works for the system identiication, including the identiication of piecewise models such as the Switched
aine AutoRegressive eXogenous (SARX) model and the PieceWise aine ARX (PWARX) model. A primary
challenge of such identiication includes the inference of the parameters of all potential models, as well as
the coeicients of the hyperplanes that partition the state-input domain. Such approaches have been well
studied [22, 32, 43]. The majority of works can be divided into three categories: algebraic based [9, 34, 52ś54],
clustering-based [10, 13, 19, 23, 27], and optimization based [8, 28, 30, 37, 42]. The algebraic methods regard the
identiication of multi-models as one single model. The parameters are estimated with a polynomial embedding
from whose derivatives the original model can be estimated. The clustering-based methods utilize feature vectors
computed from local data sets to cluster the models and then estimate their parameters. The optimization-based
methods convert the estimation of models to an optimization problem, such as minimization of a predeined
loss function. Most of these works mainly focus on the identiication of models, but few of them consider the
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inference of the overall automaton and switching policies. Recent works on identiication of hybrid automata are
as follows. Summerville et al. propose a framework for hybrid automaton inference [48], where a cost function
with a penalty criterion based on one set of potential linear model templates is applied to segment the traces and
then select an optimal model with the minimum trace error. Their guard conditions are selected from predeined
predicates using Normalized Pointwise Mutual Information (NPMI). Niggemann et al. model each segment using
linear regression or neural networks [41]. The similarity of states is tested by checking the probability of staying
in the state. States are merged in a bottom-up fashion. Guard conditions are estimated by a combination of
exogenous events, timing constraints, and transition probabilities. Medhat et al. cluster the observed traces into
input/output events according to predeined features [36], and then apply the linear regression to estimate the
clustered dynamics. They derive an automaton based on a Mealy inference algorithm within LearnLib. Grosu et
al. propose a methodology to estimate cycle-linear hybrid automata for excitable cells from virtual measurements
[24]. The traces of electrical signals are segmented by iltered null points and inlection points. Then, they apply
a modiied Prony’s method to it an exponential function to each segment within an error bound. The transition
guards are estimated from the transitions’ post states. Sarkar et al. propose an approach to learn a stochastic
switched linear model for nonparametric systems, which is by constructing data with Hankel-like matrices
and computing approximations via singular value decomposition (SVD) truncation [46]. Miriam et al. propose
algorithms to apply membership-based synthesis to learn linear hybrid automata with nondeterministic guards
and invariants [47]. Bernhard et al. combine abstract automata learning, model-based testing, and machine
learning to learn a hybrid system, where the state space is irst discretized and then a testing method is applied to
generate suicient data for the behavioral estimation in the machine-learning process [2]. Lamrani et al. propose
a framework for the learning of hybrid systems [31], where candidate models are clustered from traces using
feature vectors, and guard conditions are then estimated based on the segmentation of traces. However, such a
framework requires a good prior knowledge of the target system to select features for the clustering.

Even though tremendous related techniques have been developed, the inference of hybrid automata is still an
open and challenging problem. In this paper, we propose a framework for inferring and validating deterministic
hybrid systems from another perspective. We evaluate it with four benchmarks as well as a comparison with
one state-of-the-art membership-based approach, and show that our framework can identify accurate hybrid
automata given trace information and can be an efective and promising approach.

3 HYBRID AUTOMATA

Hybrid automata are a common formal modelling framework for hybrid systems that combine inite state machines
with a inite set of real-valued continuous state variables described by diferential equations or inclusions. Our
work mainly focuses on deterministic and synchronous models, where all constraints over state variables are
speciied using linear (aine) equations or inequalities. Given a set of time series traces that are generated from
a hybrid system, a formal inference model, Gh , for this hybrid system is inferred as a hybrid automaton. We
assume the system dynamics in each mode are characterized by an aine ODE:

ẋ = Aqx + Bqu (1)

where Aq and Bq are constant system matrix, and x indicates the state variable vector and u denotes an input
vector. In our work, the identiication problem of this continuous dynamics is the determination of Aq and Bq
from traces that are collected at a constant sampling frequency. With these traces, its discrete-time representation
will be irst derived and then be converted back to Equation 1. Here, the discrete-time representation is deined as

xk+1 = Axk + Buk (2)

where matrix A and B will be used for the further mode identiication and mode merging in the framework.

Deinition 3.1 (Hybrid System Model). A hybrid automaton Gh is a tuple Gh = ⟨Q,X , f ,E,Φ,U ⟩:
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• Q is a inite set of control modes, and X ⊆ Rn is the continuous state space, an element of which is typically
denoted as x = [x1,x2, . . . ,xn]⊤ ∈ X . The x is also referred as the variable vector.
• f is a vector ield that describes the dynamics of X with respect to real-time, f : Q × X ×U → X . For a
mode q ∈ Q , we deine f as in Equation 1, where Aq and Bq are time-invariant within mode q:

ẋ = f (q,x,u) = Aqx + Bqu.

• E denotes events or guard conditions that trigger modes switching, where e ∈ E is an exogenous event or
multiple linear inequalities (predicates) involving continuous variables. The invariant conditions are the
complement.
• Φ denotes the discrete transitions: Q × E → Q . Here, ϕ : ⟨q, e,q′⟩ ∈ Φ denotes a mode transition from
source mode q to a destination mode q′ triggered by an event e .
• U ⊆ Rm denotes a continuous space of inputs, and u = [uo ;uq]⊤ ∈ U is an input consisting of an exogenous
input to the system, uo ∈ Rm−1, and an internal constant, uq ∈ R in each mode.

Deinition 3.2 (Trajectory). A trajectory ofGh from a state (q,x) to a state (q′,x′) where q,q′ ∈ Q and x,x′ ∈ X
is a pair ρ ≜ (Q,X).Q and X are functions that deine for each time point in an intervalT the mode and the values
of the continuous state variables. The time points where mode switches ϕ ∈ Φ occur are deined as timestamp
changepoints (τi )i=0,1, ...,p ∈ T . The timestamp changepoints τi must satisfy the following conditions: (1) τ0 = 0,
τi < τi+1 and τp = T , (2) ∀i∀t ∈ [τi ,τi+1), Q (t ) = Q (τi ), (3) ∀i∀t ∈ [τi ,τi+1), the dynamics function f at each t is
the same as at τi .

4 IDENTIFYING AND CLUSTERING DYNAMICS FROM TRACES

In this section, we present a method to estimate and cluster ordinary diferential equations (ODEs) from traces.
In clustering of trace segments, some works apply clustering methods from the ield of machine learning [36].
However, it is challenging to select efective dynamic features to distinguish time-series data traces from diferent
dynamics, and meanwhile the selected features may not be easily generalized to other systems. Instead, we utilize
the Linear Matrix Inequality (LMI) method to detect the dynamic similarity between trace segments under a
speciied error tolerance.

4.1 Changepoints and Input-output Traces

The dynamics of hybrid systems is relected in the behaviors of execution traces. One such trace is one set of a
inite sequence of input signals and their corresponding outputs (or state variable values) with a constant sampling
time interval ts . From the perspective of the trajectory in Deinition 3.2, an output trace over an execution time T
is a sequence of sampled values of the continuous variables x in the trajectory over T , and it is denoted as X. In
segmenting the traces, a changepoint of two consecutive trace segments is characterized by an abrupt change in
value or slope, which also can relect a mode switch. Thus we use the timestamp changepoints (τi )i=0,1, ...,p ∈ T
from Deinition 3.2 to represent the time point where mode switches happen. With such changepoints, an
output trace X ∈ Rn×l with a length l will be segmented into [X1,X2, . . . ,Xp], where Xi = X[τi ,τi+1] and li is its
length. Similarly, letU ∈ Rm×l be an input trace, then [U1,U2, . . . ,Up] represent the input segments where
Ui = U[τi ,τi+1]. A set (Xi ,Ui ) is called a trace segment. This deinition of traces is demonstrated by one example
of state traces collected from a buck-converter system, as show in Figure 3.

In our experiments, all the traces are automatically segmented by applying the peak detection algorithm on the
second-order diference of state traces. A desired trace segment should only contain a single dynamics. Despite
the fact that a perfect segmentation cannot be guaranteed due to noises in traces, the clustering method based
on the LMI in the following section helps ilter out erroneous trace segments that contain multiple dynamics.
This is because when a trace spans multiple dynamics, the solution space for its ODE estimation will have few
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chances to overlap with the solution space from the trace that has single dynamics. These erroneous segments
can be detected by checking the number of trace segments in each cluster. Additionally, the changepoints of
these mis-segmented traces do not relect the true guard condition for mode transitions. In the estimation of the
guard conditions, these changepoints will likely fall in the outlier where they become invalid. Overall, with our
framework, the impact of mis-segmented traces on the inference of hybrid automata can be reduced.
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Fig. 3. One set of traces from a buck-converter system. This set of data includes the voltage and current measurement in a

circuit, and here τ denotes a discontinuity, henceforth referred to as a changepoint.

4.2 Construction of Solution Space

Given a trace segment, A solution space is the space that contains all the possible parameter sets for Equation 2
under a pre-speciied error tolerance. The error here refers to the diference between the given traces samples
for learning and the traces generated from the learned dynamics. The solution space is represented by a Linear
Matrix Inequality (LMI) as deined in Equation 8. Based on it, we can inspect the similarity between the dynamics
of trace segments by checking whether their solution spaces overlap. The construction of the LMI starts with the
dynamics formulation. To reduce the impact from noise in trace segments, we consider the dynamics in Equation
3 which is modiied from Equation 2:

xk+j = Ajxk +A
j−1Buk +A

j−2Buk+1 + · · · + Buk+j (3)

The reason is as follows. Suppose an output x = x + ε where x denotes the true value and ε denotes noise, then
Equation 2 can be converted to

xk+1 + ε = A(xk + ε ) + Buk

but the diference of state-variables values after one time step can be so small that the noise ε may dominate
the dynamics estimation, leading to an inaccurate model. To simplify the analysis in this equation and further
application of LMI, the system is assumed to have a constant input u = uk over this j time steps. Thus, with
E = Aj−1B +Aj−2B + · · · + B as one matrix, Equation 3 can be simpliied to Equation 4. In this case, ∥xk+j − xk ∥
normally increases with j, such that a larger j can reduce the impact of the noise ϵ . For diferent dynamics
and noise bounds, the choice of j can be determined empirically. Our experimental results of the inference of
two hybrid automatons show that when j=10, accurate hybrid models can be estimated from state traces with
uniformly distributed noise [−0.05, 0.05].

xk+j = Ajxk + Euk (4)

Let A = [Aj ,E], O = (X,U ) be the collected traces of the state variables and input signals of the right part of
Equation 4, and O ′ = X be the trace of the state variables of the left part. Given a trace segment (Xi ,Ui ) with a
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constant sampling interval τs , we can construct Equation 5 from Equation 4 that

O ′i − AiOi = 0 (5)

where Oi = [X;U][τi ,τi+1−jts ] ∈ R
(n+m)×(τi+1−τi−jts ) , O ′i = X[τi+jts ,τi+1] ∈ R

n×(τi+1−τi−jts ) , and Ai = [Aj ,E] ∈
R
n×(n+m) , and τi , τi+1 are timestamps of chanдepoints . A typical method to compute the optimal parameter sets

for this trace segment is the least square method. However, empirically it will be still challenging to measure the
similarity between the derived parameter matrix of diferent trace segments. Therefore, here we propose the
solution-space approach as an alternative to handle such problems. By adding an error tolerance σ to Equation 5,
we have

∀h ∈ [1, 2, . . . ,n],
1

li
∥{O ′i − AiOi }h ∥2 ≤ σ (6)

where {∗}h denotes the error trace of the continuous variable xh , li denotes the trace length, and the 1
li
∥ ∗ ∥

indicates the averaged error. The function {∗}h can be realized by right multiplying a selection matrix Ch ∈ R
1×n

where the hth element is 1 and the rest of elements are zero. Then Equation 6 is converted to

1

li
∥Ch (O

′
i − AiOi )∥2 ≤ σ (7)

Therefore, it is guaranteed that, for each dimension of output in all the possible models within this solution space
of A, the average error is not greater than σ . Thus, it can be guaranteed that the precision of clustered dynamics
can be bounded by σ . According to Theorem 4.1, which has been proven [56], Equation 7 is equivalent to a
non-strict LMI that

Fh =

[
I (O

′

i − AiOi )
⊤C⊤

h

Ch (O
′

i − AiOi ) (liσ )
2

]
⪰ 0

The multiple LMIs F1 ⪰ 0, F2 ⪰ 0,. . . can be merged into a single LMI: diag{F1, F2, . . .} ⪰ 0, where diag{} denotes
the diagonal matrix of given matrices. Therefore, considering all (Fh )h∈[1,2, ...,n], the solution space Si of Ai for
the trace segment (Xi ,Ui ) can be transformed into an LMI form as Equation 8 and F (Ai ) = diag{F1, F2, . . . , Fn }.

Si = {Ai |F (Ai ) ⪰ 0} (8)

Theorem 4.1. SupposeM is a symmetric matrix given by

M =

[
A B

B⊤ C

]
and A is invertible. Then, suicient and necessary conditions for positive semideiniteness of (M ⪰ 0) in terms of the

Schur complement are

M ⪰ 0⇔ A ⪰ 0, C − B⊤A−1B ⪰ 0, (I −AA−1)B = 0

4.3 Intersection of Solution Spaces

In this section, methods for linear matrix inequalities are applied to determine the intersection between two
diferent solution spaces. The existence of an intersection implies that the dynamics of these two segments can
be clustered into one. Given two trace segments (U1,X1) and (U2,X2), we can construct their solution space
F (A1) and F (A2) as LMIs according to Equation 8. To determine intersection between these two solution spaces,
we can merge them into one LMI diag{F (A1), F (A2)} ⪰ 0 and compute its feasibility. A true feasibility indicates
an intersection and that these two segments exhibit similar dynamics, and otherwise, not. The LMI approach we
apply is the polynomial-time projective method proposed by Nemirovskii [38], which is one of the most eicient
algorithms among interior-point methods for solving LMI problems.

The clustering method is illustrated in algorithm 1, which recursively searches for the trace segments belonging
to the same cluster by checking their intersection. In the algorithm, the longer trace segment is assumed to have
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Algorithm 1: Identiication of modes.

O ← p sets of sorted trace segments;
Function FnRecursive(O)

Oc , In ← empty # In is a set of indices ;
if O , empty then

S1 ← FnSoluspace(O1) # construct a solution space;
for j = 2 to p do

Sj ← FnSoluspace(Oj ) ;
Stemp ← FnCombine (S1,Sj ) # combine two solution spaces;
feasibility← FnInspace (Stemp ) # check the feasibility of the two solution spaces;
if feasibility < 0 then

j add to In # two solution spaces are compatible and their dynamics will are clustered;
else

Oj add to Oc ;
end

end

FnRecursive (Oc ) add to In # the recursive step for the unclustered trace segments;
return In ;

else

return empty;
end

end

higher likelihood of encoding more dynamic information. Thus, trace segments are sorted in decreasing order
and the longest segment is used as a reference for the rest. The function’s output is the clustered index of trace
segments. Here, the symbol Oj denotes the jth trace segment and the symbol Sj denotes its solution space in
LMIs. The Oc denotes the set of trace segments that fails to be clustered with the O1, and In denotes the set of
index of segments which belong to the same cluster. The functions in the algorithm are as follows. (1) Function
FnSoluspace returns its solution space expressed in LMIs. (2) Function FnCombine combines two solution spaces.
(3) Function FnInspace calculates the feasibility of two LMIs through the projective method.

For the computational complexity, let n be the total number of traces segments for the framework. The mode
identiication takesO (n2) operations of checking the feasibility of LMIs. After clustering, all the trace segments in
the same cluster will be applied to calculate the A. With the sampling interval τs , the continuous dynamics can
subsequently be derived. The clustered ODEs will be labelled with the symbol f , and then the segmented trace
is converted into a ODE-label trace. Suppose a trace X is segmented into [X1,X2,X3], and X1, X3 are clustered
together with a label f1, and the X2 is with a label f2, thus, we have a ODE-label trace [f1, f2, f1]. Accordingly, we
obtain two preliminary transitions for X1 → X2 and X2 → X3:

⟨f1, changepoint, f2⟩, ⟨f2, changepoint, f1⟩ (9)

5 INFERRING GUARD CONDITIONS

As described in Deinition 3.1, there are two types of guard conditions: exogenous event and linear inequalities
(LIs). As introduced, the model we consider is synchronous, which indicates that there is no delay between the
input and output. Therefore, the event ’s immediate impact on the system will be directly relected in a mode
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Algorithm 2: Identiication of Multi-planes.

while true do

bestPlane, bestData← empty ;
bestNum← 0;
Remove(bestData);
for n = 1 to η do

plane← FnRandomSample(data) # randomly create a candidate;
inNum, inData← FnValidP(plane) # determine the inliers and outliers;
if inNum > γ & inNum > bestNum then

bestNum, bestData← inNum, inData # update the current optimal candidate;
bestPlane← plane;

end

end

if bestPlane , empty then

Output (bestPlane);
else

break

end

end

switching and its corresponding changepoint in output traces, from which the association between the event and
its mode switching can be achieved. Here, we mainly focus on the LIs’ estimation.
The LI estimation is conducted for each type of preliminary transition (from (9)) that have the same source

ODE and destination ODE. There generally exist various types of LIs guard conditions for transitions. Suppose
two e1 and e2 LIs guard conditions are respectively derived for the changepoints in the transitions in (9), then
we can update those preliminary ODE-labeled transitions to ⟨f1, e1, f2⟩ and ⟨f2, e2, f1⟩ which will be utilized for
future mode merging.
Given changepoints from one type of transitions, we can estimate the LIs using aine-subspace clustering

method which aims to cluster data into multiple low-dimensional planes. Here, we utilize the Random Sample
Consensus (RANSAC), a statistical method proposed in [20] which is a learning technique for estimating parame-
ters of a mathematical model by iteratively and randomly sampling a set of observed data. The observed data
contain inliers, points that can be approximated by itting to a plane, and also outliers, points that cannot be it.
The plane that are estimated from the most inliers is selected as the optimal one. In our case, the changepoints
are normally close to the boundary of LIs, so RANSAC can potentially exhibit a very competitive performance
compared with other methods [5]. The original RANSAC estimates one plane for one particular data group. A
guard condition may consist of multiple LIs in conjunction, which means there may exist multiple planes to
estimate. Inspired by the work [50, 55], we choose to apply RANSAC sequentially, to mine a new subspace from
the modiied data set, where the points belonging to previously found planes are removed.
The algorithm is shown in Algorithm 2. The inData and inNum denote the inlier points and their number,

respectively. The plane denotes a candidate in one iteration while the bestPlane, bestData and bestNum denote
information of the current best candidate. During each iteration, the function FnRandomSample randomly selects
a candidate. The function FnValidP inds all its inlier points. Once a new plane is determined, the corresponding
points will be removed before the next iteration. The process will be terminated after no more planes is found.
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Fig. 4. Linear inequality estimation using RANSAC.

Figure 4 demonstrates one sample of LI estimation from changepoints of one same type of transitions. The
points describe the changepoints, from which multiple solid lines that denotes the LIs can be estimated using the
modiied RANSAC. The points’ positions, with respect to their lines, are used to determine the inequality sign.
The logical connectivity between multiple linear inequalities is also taken into consideration. LIs are determined
to be conjuncted if all trace segments ahead of those changepoints do not satisfy them, otherwise, each LI is treated
as an individual guard condition. For the changepoints that are still outliers after the algorithm termination, we
use a label 0 to indicate an invalid estimation. The transition with such guard condition will be removed from the
further automata inference.
Similar to the original RANSAC, the modiied one has three parameters to specify: (1) error tolerance, λ, to

check a point’s compatibility with a model candidate, (2) the iteration number, η, for each model estimation,
and (3) the threshold number of compatible points, γ , that indicates a valid estimation. In our work, the error
tolerance, λ, is described by the distance between a point and its corresponding aine hyperplane. There do not
exist straightforward methods to determine these three parameters, but we are able to approximate them by
decreasing it from a large value. Since all the changepoints are near the boundary of their planes, there should
be an error tolerance λ, such that most of the points become inliers. Decreasing, iteratively, from a large value
candidate to approach such a λ helps achieve a robust estimation. For the threshold number, suppose that the
probability of one point being compatible with all the planes is equal, then, the selected γ should not exceed
n/m, where n is the total number of data points and m is the number of linear inequalities involved in that
transition condition. The iteration number η can be approximated with the method in [20], which is based on the
assumption of the probability of only inliers being selected in some iterations and the probability of one single
inlier being selected each time.

6 MERGING MODES

In this section, we introduce the concept of the preix tree acceptor (PTA) to help merge the ODE-label traces
from the previous section and construct the inal hybrid model. Each ODE which represents a type of dynamics
will be regarded as a candidate mode. There exist many heuristic algorithms focusing on inferring automata
grammar from a set of labeled strings. To our best knowledge, the element in the string only represent input
events or internal guard conditions that trigger mode switches, without considering the dynamics in modes. In
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Fig. 5. Illustration of mode merging. According to the compatibility criterion, f3 and f1 in trace1 are respectively compatible

with the f3 and the f1 in trace3. However, they are not compatible with the states in trace2 because in the subsequent

transition, the guard condition e2 triggers diferent transitions from the f1 state.

our proposed framework, besides the estimated guard condition of each transition, the dynamics in each mode
has been classiied before the merging, which can be used for a more robust inference. As shown in Figure 5,
each subtree in a PTA represents one processed mode trace. Each mode is characterized by their own ODE, f ,
and the guard condition in each mode switching is denoted by e . Unlike the work [14, 41] which shows that
the similarity of two modes is associated with the probability of staying in or transitioning out of a mode, our
method evaluates the compatibility of two modes using their derived ODEs and transition conditions. To avoid
creating a non-deterministic system during the process of merging, modes are compatible under the following
two conditions:

• First, the source ODE, destination ODE and guard conditions of two transitions are the same, and meanwhile,
in the subsequent transition where the destination ODE is the next source ODE, there do not exist diferent
transitions that are triggered by the same guard condition. Then the modes involved in these two transition
are compatible. This situation is illustrated in Figure 5.
• Second, the irst segments in each trace have the same dynamics and represent the same initial mode.

In the algorithm, merging of modes is associated with the merging of mode transitions. We irst construct a
6-tuple ⟨label1, e, label2, id1, id2, times⟩ for each mode transitions in traces. label1 and label2 respectively denotes
the labels of the source and destination ODE. Item e denotes the guard condition. Modes with the same ODE
are not necessarily compatible, which will be demonstrated by the navigation system in the case study. Some
modes exhibiting the same dynamics are separated due to diferent guard conditions. For a clear identiication,
the modes in all the preliminary traces will also be assigned with a unique index id in addition to the ODE label
and this index is used to represent the unicity of a mode. The id1 and id2 respectively denote the index of the
source and destination. Item times is used to count the number of transitions that are merged to the current one.
During the merging process, the 6-tuples are checked and merged according to the compatibility criterion.

The algorithm is shown in Algorithm 3. For each pair of tuples ituple and jtuple , we check their compatibility
by the function FnCompatibility which refers to the compatibility criterion. If they are compatible, jtuple will
be merged to ituple , and id1, id2 of jtuple are modiied to be consistent with ituple’s. Meanwhile, the function
FnModifyTuple is applied to search the rest of transitions and modify the modes having the same indices as
jtuple’s. Thus the connectivity between transitions can be maintained. Afterwards, the jtuple is emptied and the
times in ituple is increased by one. For the analysis of the algorithm complexity, let n be the number of tuple .
Then the merging modes takes O (n2) operations of checking the compatibility of tuples.
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Algorithm 3:Merging Modes.

for i = 1 to num_tuple do

ituple← tuples[i];
if ituple , empty then

for j = i + 1 to num_tuple do

jtuple← tuples[j];
if FnCompatibility(ituple, jtuple) then

FnModifyTuple(ituple, jtuple);
tuples[j]← empty ;
ituple.times + +;

end

end

end

end

return tuples;

6.1 Parameter Selection

Multiple parameters need to be set in the identiication of dynamics and the inference of guard conditions, and
their selection can determine the performance of the framework. The identiication of dynamics includes two
parameters. One is the parameter j in Equation 3 which denotes the number of steps and is utilized to reduce the
impact of the noise. Overlarge values of j result in less impact of the noise. The other one is the error tolerance ε ,
which is for the solution space of ODE parameters. An overlarge value of ε generates a larger solution space,
which may result in clustering together trace segments with diferent dynamics. Too small a value leads to a
smaller solution space, which may result in classifying segments with similar dynamics into diferent clusters.
In the guard-conditions, the λ determines changepoints’ compatibility with a mode candidate. An overlarge
value can misclassify changepoints into a diferent LI. While too small a λ will generate more outliers and thus
lose more information. For the η, a large number will increase the robustness of the LI estimation but will also
increase the computational burden. The threshold number γ is the number of changepoints needed to validate an
estimation. An overlarge value can cause estimation failure while too small a value can yield a large amount of
LIs and thus cause overitting issues.

7 CASE STUDIES AND EVALUATION

In this section, we study several case studies to evaluate the proposed hybrid automata learning framework
on diferent systems, following the validation overview from Figure 2. The chosen systems are a navigation
system, a multi-room heating system [18], and a DC-DC buck converter system [11, 40]. They all have linear
ODEs, guards, and invariants. We also compare our method with a membership-based algorithm [47] on a
simpliied heating system. They are designed as Simulink/Statelow models that can generate training traces for
the hybrid automata inference framework and testing traces for validation of our methodology. The methodology
is implemented in a prototype software tool in Matlab, building on the HyST software tool [7] and its integration
with Simulink/Statelow [6]. 1. In the evaluation, we utilize two methods to measure the proximity between the
inferred system and the original. The irst one is comparing their reachable states given an input set. Using the
learned hybrid automata that are generated from our framework, we compute their reachable sets using SpaceEx

1Code for the prototype HAutLearn tool and examples is available online at: https://github.com/verivital/hautlearn
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to compare the original model to the learned model as a form of equivalence checking. The second evaluation is
the conformance degree proposed in [1, 12]. As deined, it can provide a proximity measure between two output
traces in both space and time (see Table 1). It is noteworthy that the component τ of the conformance degree
relies on the running time T of traces. A longer trace will lead to a larger value τ . This is because the estimation
error in the model-transition condition as well as in the dynamics equations will be relected on the diference of
transition time between the original system and the inferred one. Such diference can be accumulated with each
transition. This is also a challenging issue, and to our best knowledge, there are few efective solutions. Overall,
the τ that represents the worst transition-time diference is generally related to the last mode transition that
occurs in the trace. And a large value of τ can be due to many mode transitions

Deinition 7.1 (Conformance Degree). Given output traces for time T ∈ R>0, a maximum number of mode
switches J ∈ N, and parameters τc , ϵ > 0, two traces y1 and y2 are (T , J ,τc , ϵ )-close, if (1) for all (t1, j1) ∈ y1
such that t1 < T and j1 < J , there exists (t2, j2) ∈ y2 such that |t1 − t2 | ≤ tc and ∥y1 (t1, j1) − y2 (t2, j2)∥ ≤ ϵ ,
(2) for all (t2, j2) ∈ y2 such that t2 < T and j2 < J , there exists (t1, j1) ∈ y1 such that |t1 − t2 | ≤ tc and
∥y1 (t1, j1) − y2 (t2, j2)∥ ≤ ϵ .

Table 1. Execution Time and accuracy evaluation.

Case Study Total Time (sec) Trace Segments
Conformance Degree

(T (sec ), J ,τ (sec ), ϵ )

Navigation System 11157 299 (1.8, 4, 0.21, 0.22)

Multi-room Heating System 8866 691 (40, 8, 1.2, 0.98)

Buck Converter 65 144 (0.02, 13, 0.0015, 0.17)

Cooperative Vehicles 54 80 (10, 2, 0.0000, 0.1265)

7.1 Navigation System

This system deals with dynamics of an object in the R2 plane withm × n grids. In each grid, the desired velocity
along the x andy axes are respectively set to sin(i ∗π/4) and cos(i ∗π/4), where i = 0, 1, . . . , 7, and the length and
width of each are set to 1. The system to be learned is shown in Figure 6. Given the desired velocity vd , the dynamics
of the actual velocity v is described by the diferential equation v̇ = A(v − vd ) where A = [−1.2, 0.1; 0.1,−1.2].

 
B 

A 2 

4 3 

2 4 

4 

2 

Fig. 6. Navigation system in a 3 × 3 grid. The label i refers to the parameter to calculated the desired velocity. The object

needs to reach the grid labelled A and meanwhile avoid the grid labelled B.
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The object’s start position can be in any grid except forA and B. Here, we choose to learn one hybrid automaton
for each starting grid. By ixing the initial position in one speciied grid and trying diferent initial positions and
velocities, we can generate suicient trajectory traces which are respectively, position in X direction, position in
Y direction, velocity in X direction and velocity in Y direction. Then a hybrid automaton is estimated through
our framework to approximate their dynamics. We estimated one hybrid automaton for the traces starting from
the bottom left grid. For the learning, we set σ = 10−4 for clustering the trace segments, λ = 0.01, η = 103 and
γ = 10 for estimating the LIs. Here, 81 traces are collected with a sampling time ts = 0.01s . The estimated state
transitions is listed in Table 2, and the details of labels e and f is in Table 10 in Appendix A.1. Accordingly, a
hybrid automaton is constructed as shown in Figure 3. The comparison of reachable states with the original
system and accuracy evaluation are shown in Figure 7 and Table 1.

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 1 1 1 2 66
1 3 3 2 3 54
3 5 2 3 1 12
2 6 0 1 5 38
1 7 2 2 1 14
3 4 2 3 4 29
2 2 1 4 6 29
1 8 0 6 7 42
3 9 1 3 6 13

Table 2. Inferred transitions of the navigation system.
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Table 3. Inferred hybrid automaton for the Navigation

system. The number indicates each unique mode. Sym-

bol f indicates their dynamics. Symbol e indicates the

guard conditions.

(a) (b) (c) (d)

Fig. 7. Navigation: Red domain is reachable states of the inferred system while the blue domain is the reachable area of the

original system. The green domain is the initial states, which is [0.5 ≤ x1 ≤ 0.6 ∧ 0.5 ≤ x2 ≤ 0.6 ∧ 1.4 ≤ x3 ≤ 1.5 ∧ 1.4 ≤
x4 ≤ 1.5].

7.2 Buck Converter

A buck converter is a DC-DC power converter that steps down voltage from its input to its output. It exhibits both
continuous and discrete behaviors because of the presence of passive elements and switching components. Here
we consider a closed-loop DC-DC buck converter in [11]. It takes a DC voltage at its input Vin and then adjust its
output vc according to the Vr ef by controlling the operation of the MOSFET switch. It is a time-independent
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hybrid system where there are two state variables, voltage across capacitor vc and current through the inductor I .
The switching conditions of its controller include an upper switching boundary Vr ef + δ and a lower switching
boundary Vr ef − δ .

Fig. 8. Circuit of a closed-loop buck converter.

The state traces are collected using Simulink where a uniformly distributed noise with a range [−0.05, 0.05]
was added. The sampling time ts was set to 5 × 10−5 seconds and the total running time for each execution was
0.02 seconds. The range of the initial states are set to I = [0, 30] and vc = [0, 15] from which 11 traces were
collected. For the learning, we set σ = 2 × 10−2 for segments clustering, and λ = 0.04, η = 105 and γ = 10 for
estimating the LIs. The inferred hybrid automaton is shown in Figure 5 and the dynamics information is shown
in Table 11 in the Appendix A.2. The comparison of reachable states and accuracy evaluation are shown in Figure
9 and Table 1.

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 1 3 1 2 17
1 3 2 3 1 32
3 2 1 2 3 11

Table 4. Inferred mode transitions for the buck converter.

 2 �� 
1 �� 

3 �� 

�� �� 

�� 

Table 5. Inferred hybrid automaton of the buck

converter.

7.3 The Multi-room Heating System

The system includes multiple rooms. The temperature in each room is controlled by one heater and depends
on the outside temperature as well as the temperature in the adjacent rooms. Let xi denote the temperature in
room i and u denote the outside temperature. The temperature of each room exhibits linear dynamics with the
heaters’ power status, the diference between the room’s temperature and the outside temperature, and other
rooms, which is described by

f : ẋi = cihi + bi (u − xi ) +
∑

j,i

ai, j (x j − xi ), (10)

where ai, j , bj , ci are constant and hi ∈ {0, 1} denotes the heater’s status. hi = 0 indicates the heater is not in room
i or the heater is of. The heater in room i is on if xi ≤ oni and of xi ≥ o f fi . A heater will move to room i from
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(a) (b)

Fig. 9. Buck Converter: red domain denotes reachable states of the inferred system while the blue domain denotes the

reachable area of the original system. The green is the range of initial states which is [−1 ≤ I ≤ 1 ∧ −1 ≤ vc ≤ 1].
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Fig. 10. Hybrid automaton model of the multi-room heating system.

room j if all of the following conditions hold: (1) no heaters in room i , (2) one heater in room j, (3) xi ≤ дet i , (4)
x j − xi ≥ di f i .

For our experiment, the heating system is set to have three rooms and one heater. Since there may be multiple
transition conditions holding simultaneously and the system may become non-deterministic, we restrict that
there is only one destination room for each source room. Then, the system can be modelled as shown in Figure 10,
which has u and [x1,x2,x3] as the input and output, respectively. The input/output traces are collected by running
simulations in Matlab with a sampling interval of 0.1 seconds. For the learning, we set σ = 5 × 10−5 for segments
clustering, and λ = 0.05, η = 103 and γ = 10 for estimating the LIs. The state transitions in 6-tuples generated
from the framework is shown in Table 6. The inal hybrid automata is shown in Figure 7, which has 6 discrete
mode, 4 distinct ODEs, and 9 mode switches in total. The initial mode is the mode 1. The parameters of the guard
conditions e and ODEs f are shown in Table 12 in Appendix A.3. The comparison of reachable states is shown
in Figure 11. These reachable domains are approximated by simulating 1000 traces because SpaceEx does not
support the non-convex linear constraints. Its accuracy evaluation is shown in Table 1.
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label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 2 1 1 2 107

1 3 3 2 3 103

3 4 2 3 1 110

2 5 4 1 4 24

4 6 2 4 1 24

1 7 4 2 5 98

4 8 1 5 2 95

3 9 4 3 6 52

4 10 3 6 3 52

Table 6. Inferred transitions for the multi-room heating sys-

tem.
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Table 7. Inferred hybrid automaton of the heating sys-

tem.

(a) (b) (c) (d)

Fig. 11. Heater: Red domain denotes reachable states of the inferred system, while the blue domain denotes the reachable

area of the original system. The green denotes the initial states that is [14 ≤ x1 ≤ 15 ∧ 14 ≤ x2 ≤ 15 ∧ 14 ≤ x3 ≤ 15].

7.4 Cooperative Vehicles

This benchmark is a platoon of three three autonomously-driven vehicles following a leader [35], as shown in
Figure 12. The diference between the distance di of the vehicle i to its predecessor and a reference distance dr ef ,i
is deined as the space error ei . The dynamics of the platoon is as follows:

ẋ = Ax + BaL, (11)

where the state vector x consists of 9 variables and x = [e1, ė1,a1, e2, ė2,a2, e3, ė3,a3] with ai being the acceleration
of vehicle i , A and B are constant system matrix, and aL denotes the acceleration of the leader vehicle. In the case
of radio communication, A and B are given as follows:

A =

*......,

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 −0.81 0.42 −0.04 −0.19 0.36 −0.09
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0

0.87 3.81 −0.07 1.19 3.62 −3.23 −0.59 0.12 −0.07
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

+//////-
, B =

*......,

0
1
0
0
0
0
0
0
0

+//////-
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While in the case of no communication, A and B are given as follows:

A =

*......,

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1.19 3.62 −3.23 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

+//////-
, B =

*......,

0
1
0
0
0
0
0
0
0

+//////-
The platoon is modelled as a hybrid automaton. Every two seconds, the radio communication breaks down for

the following two seconds. The breakdowns trigger discrete switches, where a timer is reset. For the training
data, we collect 16 traces using Simulink with the running time and sampling time, respectively, set to 10 seconds
and 0.05 seconds. The collected traces are also added with uniformly distributed noise [−0.05, 0.05]. For the
learning, we set σ = 8 × 10−3 for segment clustering, and λ = 0.01, η = 105, and γ = 10 for estimating the LIs.
The state transitions in 6-tuples generated from the framework are shown in Table 4. The inal hybrid automaton
is shown in Figure 9, which has 2 discrete modes, 2 distinct ODEs, and 2 mode switches in total. The initial mode
is the mode 1. The parameters of the guard conditions e and ODEs f are shown in Table 13 in Appendix A.4. The
comparison of reachable states is shown in Figure 11. The accuracy evaluation is shown in Table 1

3 2 1 Leader

(radiocommunication)

d3

dref,3 e3

d2

dref,2 e2

d1

dref,1 e1

Fig. 12. Cooperative platoon of three vehicles and a leader vehicle.

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 1 3 2 1 20
3 2 2 1 2 15

Table 8. Estimated hybrid automaton for the cooperative vehi-

cles. The transition in red with label2 being 0 is an erroneous

transition.

1

f3
2

f2

e1

e2

Table 9. Inferred hybrid automaton of the cooperative

vehicles.

7.5 Comparison on A Heating System

We compare our framework with a membership-based algorithm (Hysynth) for learning linear hybrid system
from traces [47]. This methods deines the continuous dynamics of models with constant diferent equations
which generally suices to estimate an arbitrary continuous function. As claimed, this algorithm can learn an
automaton with nondeterministic guard conditions and invariants with piecewise linear functions that are derived
from input-output traces. We are not able to it multi-variable traces using their source code, although there is no
such limitation claimed in their work. Therefore, we choose to evaluate our framework against this algorithm in
a simple case study. The target hybrid system is a heating system with one heater controlling the temperature x ,
which is modelled as shown in Figure 13. For the learning, 5 traces are collected with a time horizon of 20 seconds,
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a sampling interval 0.1 second, and diferent initial conditions. The piecewise linear functions are created for the
membership-based method with an error bound ϵ = 0.1.

Fig. 13. Heating system with one heater.

Our framework can successfully learn an automaton with similar dynamics as shown in Figure 14. The running
time is 5 seconds. While the membership-based method derives an automaton with 40 discrete modes and 71
mode switches, where 6 of the discrete modes are unreachable. Its running time is 2 seconds. Trace samples
generated from the learned systems are shown in Figure 15. We can notice that the system learned with Hysynth
terminates early and yields incomplete traces that are in red. This is mainly because the dynamics violates the
invariant of a discrete mode that do not have successor discrete modes to switch to. So, this inferred automaton
fails to recover behaviors of the original system. The reason of this undesirable performance may be because it
can deal with simple dynamics of the form ẋ + c = 0, but cannot be applied to the more general ODEs allowed by
our method.

Fig. 14. Inferred hybrid automaton from the heating system with one heater.

Fig. 15. Comparison of hybrid automatons learned by our method and the membership-based method. The black traces

are from the original system, the blue traces are from the system learned by our method. While the red traces are from the

system learned by the membership-based method.
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8 CONCLUSION

This paper presents a framework to mine and learn hybrid automata with linear (aine) constraints and ODEs from
input and output traces. It irst clusters and estimates ODEs for the segmented traces by checking the intersection
of their solution space using an LMI method. The obtained ODEs for segments deined by discontinuities in the
traces are learned as potential discrete modes. Subsequently, a modiied subspace-clustering method is applied to
estimate the linear inequalities that describe the transition guard conditions from the collected changepoints.
With the potential modes and classiied events, a PTA method is applied to merge the achieved states and generate
the hybrid automaton. The utility of this framework is validated by comparing approximated traces with the
source traces from which the automaton is learned. There are multiple directions to improve our framework. In
future work, we plan to explore improvements in the capability of data preprocessing, such as noise iltering,
so that it can have better scalability. As discussed, a robust method of trace segmentation is essential for the
inference of hybrid automaton, and further research is needed in that direction. Another potential enhancement is
extending this framework to nonlinear hybrid systems by exploring methods to estimate the nonlinear dynamics
of each trace segment. Further case studies using black-box models and runtime monitoring can be conducted,
but likely will depend on improving scalability as just discussed.
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A APPENDIX: ADDITIONAL DETAILS FOR THE CASE STUDIES

A.1 Navigation System

Table 10. Guard conditions e and Dynamics f of the learned automata for the navigation system.

e1 : 0.0049x − 0.9980y − 0.0134vx + 0.0217vy + 1 ≤ 0

e2 : −0.4904x − 0.0049y + 0.0030vy + 1 ≤ 0

e3 : −1.0065x + 0.0031y + 0.0201vx − 0.0028vy + 1 ≤ 0

e4 : −0.0045x − 0.4971y + 0.0011vx + 0.0064vy + 1 ≤ 0

e e5 : 0.0083x − 1.0007y − 0.0166vx + 0.0139vy + 1 ≥ 0

e6 : −0.5018x + 0.0067vx − 0.0030vy + 1 ≤ 0

e7 : 0.0011x − 1.0070y + 0.0159vx + 0.0126vy + 1 ≥ 0

e8 : 0.0054x − 0.9710y − 0.0176vx + 0.0521vy + 1 ≥ 0

e9 : −0.4784x + 0.0019y − 0.0449vx + 0.0168vy + 1 ≤ 0

f1 : A =



0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


,B =



0.0000

0.0000

0.0100

−0.1200



f f2 : A =



0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


,B =



0.0000

0.0000

0.1200

−0.0100



f3 : A =



0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


,B =



0.0000

0.0000

0.0919

−0.0919


A.2 The Buck-converter System

A.3 The Multi-room Heating System

A.4 Cooperative Vehicles
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Table 11. Guard conditions e and Dynamics f of the learned automata for the buck converter system.

e1 : 0.0004x1 − 0.0824x2 + 1.0 ≤ 0

e e2 : −78.8x1 − 0.0638x2 + 1.0 ≥ 0.0

e3 : 0.0012x1 − 0.0842x2 + 1.0 ≥ 0.0

f1 : A =


−271.7 −377.4

454.5 −45.45

 B =

9056.6

0.0000


f f2 : A =


−195.1 −378.4

454.6 −45.47

 B =

11.29

0.1235


f3 : A =


−0.1511 0.6177

0.0001 −45.45

 B =

−9.392

0.0057


Table 12. Guard conditions e and Dynamics f of the learned automata for the multi-room heating system.

e2 : −0.4794x2 + 0.4770x3 + 1 ≤ 0 ∧ 0.0014x1 − 0.0659x3 + 1 ≥ 0

e3 : 0.4884x1 + 0.0013x2 − 0.4901x3 + 1 ≤ 0 ∧ −0.0627x1 + 1 ≥ 0

e4 : −0.3309x1 + 0.3292x2 + 0.0016x3 + 1 ≤ 0 ∧ −0.0641x2 + 1 ≥ 0

e5 : −0.0480x2 + 1 ≤ 0

e e6 : −0.0527x2 + 1 ≥ 0

e7 : −0.0456x3 + 1 ≤ 0

e8 : −0.0539x3 + 1 ≥ 0

e9 : −0.0475x1 + 1 ≤ 0

e10 : −0.0496x1 + 1 ≥ 0

f1 : A =


−0.1001 0.0298 0.0040

0.0299 −0.1001 0.0500

0.0398 0.0497 −0.1400

 B =

0.0301 0.0036

0.0200 0.0024

0.0501 1.1060


f f2 : A =


−0.0994 0.0302 0.0392

0.0209 −0.1040 0.0530

0.0410 0.0504 −0.1413

 B =

0.0301 −0.0025

0.0230 0.8405

0.0502 −0.0042


f3 : A =


−0.0532 −0.0776 0.0941

0.0299 −0.0999 0.0500

0.0397 0.0502 −0.1399

 B =

0.0230 0.9161

0.0200 0.0000

0.0501 0.0000


f4 : A =


−0.1003 0.0298 0.0397

0.0298 −0.1001 0.0498

0.0395 0.0497 −0.1406

 B =

0.0303 0.0107

0.0202 0.0071

0.0505 0.0179


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Table 13. Guard conditions e and Dynamics f of the learned automata for the multi-room heating system.

e1 − 0.5128t + 1 ≤ 0; t = 0;

e2 − 0.5128t + 1 ≤ 0; t = 0;

f2 : A =



−0.2474 0.5568 0.2046 0.0583 −0.2216 −0.0015 −0.0227 −0.1457 0.2183

−0.3591 −1.2851 −0.8297 −0.2218 −0.8613 −0.0163 −0.4111 −0.7054 0.7599

1.3970 3.6241 −2.8374 −0.2900 −0.3110 −0.0552 −0.2818 −0.3502 −0.0988

0.1469 −0.0462 −0.1657 −0.1852 0.8500 0.0151 −0.1603 −0.1636 0.077

−0.1605 −0.7953 0.9879 −0.2192 −0.6950 −1.0086 −0.3207 −0.6155 0.6032

0.1304 −0.3190 −0.1390 0.9189 3.1426 −2.0634 −0.0656 0.3862 −0.5285

−0.0182 −0.4770 −0.0579 −0.2057 −0.3947 −0.0089 −0.2646 0.6382 0.3288

−0.1252 −0.8587 −0.0594 −0.2904 −0.7963 1.0033 −0.3948 −0.7162 −0.3455

0.8712 4.1273 −0.1135 0.9544 3.6687 −0.0814 1.4677 3.4067 −3.5463



B =



0.0850 −0.0487

1.4159 0.3822

0.3349 0.1665

0.0800 0.2523

0.2593 0.2860

0.8062 2.5326

0.1943 0.3559

0.2998 0.3681

−0.1777 −0.1891



f3 : A =



−0.1296 0.8586 0.1423 0.0820 −0.0756 0.0058 0.0435 −0.0323 0.0255

−0.2269 −0.4539 −0.6487 0.1232 −0.1842 −0.0092 0.0259 −0.1155 −0.0028

1.3946 4.4506 −3.1376 −0.6166 0.5344 −0.0472 −0.0463 0.4700 −0.2756

0.1619 0.1622 −0.3123 −0.1775 0.9763 0.0094 −0.1086 −0.0626 0.14073

−0.0717 −0.2104 1.0574 −0.0124 −0.1691 −0.9987 −0.0480 −0.1370 0.1150

0.4699 3.3837 −0.0129 1.2955 3.3234 −2.2285 0.1033 0.2572 −0.7385

0.0000 −0.1019 −0.0034 −0.0422 −0.0908 −0.0166 −0.0618 0.9239 0.0792

0.0113 −0.0746 −0.0686 −0.06537 −0.1245 1.0026 −0.0680 −0.12317 −0.8793

0.6570 3.5501 0.0957 0.9566 3.3547 −0.0977 1.3575 3.1740 −3.2994



B =



0.0089 −0.0984

1.1166 0.0102

0.0762 −0.0838

−0.0057 0.0822

0.0564 0.0566

0.1114 −0.3391

0.0408 0.0909

0.0325 0.0744

−0.0176 −0.0396


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